On the (k, i)-coloring of cacti and complete graphs
In the (k, i)-coloring problem, we aim to assign sets of colors of size k to the vertices of a graph C, so that the sets which belong to adjacent vertices of G intersect in no more than i elements and the total number of colors used is minimum. This minimum number of colors is called the (k, i)-chro...
Guardado en:
Autores principales: | Bonomo, F., Durán, G., Koch, I., Valencia-Pabon, M. |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_03817032_v137_n_p317_Bonomo |
Aporte de: |
Ejemplares similares
-
On the (k, i)-coloring of cacti and complete graphs
Publicado: (2018) -
k-tuple chromatic number of the cartesian product of graphs
por: Bonomo, F., et al. -
k-tuple chromatic number of the cartesian product of graphs
por: Bonomo, Flavia, et al.
Publicado: (2015) -
k-tuple colorings of the Cartesian product of graphs
por: Bonomo, F., et al. -
k-tuple colorings of the Cartesian product of graphs
por: Bonomo, Flavia, et al.
Publicado: (2017)