Weak completions, bornologies and rigid cohomology
Let V be a complete discrete valuation ring with residue field k of positive characteristic and with fraction field K of characteristic 0. We clarify the analysis behind the Monsky–Washnitzer completion of a commutative V-algebra using completions of bornological V-algebras. This leads us to a funct...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_03930440_v129_n_p192_Cortinas |
Aporte de: |
id |
todo:paper_03930440_v129_n_p192_Cortinas |
---|---|
record_format |
dspace |
spelling |
todo:paper_03930440_v129_n_p192_Cortinas2023-10-03T15:33:58Z Weak completions, bornologies and rigid cohomology Cortiñas, G. Cuntz, J. Meyer, R. Tamme, G. Algebraic geometry Bornological algebras Cyclic homology Overconvergent completions Positive characteristic Rigid cohomology Let V be a complete discrete valuation ring with residue field k of positive characteristic and with fraction field K of characteristic 0. We clarify the analysis behind the Monsky–Washnitzer completion of a commutative V-algebra using completions of bornological V-algebras. This leads us to a functorial chain complex for a finitely generated commutative algebra over the residue field k that computes its rigid cohomology in the sense of Berthelot. © 2018 Elsevier B.V. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_03930440_v129_n_p192_Cortinas |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
topic |
Algebraic geometry Bornological algebras Cyclic homology Overconvergent completions Positive characteristic Rigid cohomology |
spellingShingle |
Algebraic geometry Bornological algebras Cyclic homology Overconvergent completions Positive characteristic Rigid cohomology Cortiñas, G. Cuntz, J. Meyer, R. Tamme, G. Weak completions, bornologies and rigid cohomology |
topic_facet |
Algebraic geometry Bornological algebras Cyclic homology Overconvergent completions Positive characteristic Rigid cohomology |
description |
Let V be a complete discrete valuation ring with residue field k of positive characteristic and with fraction field K of characteristic 0. We clarify the analysis behind the Monsky–Washnitzer completion of a commutative V-algebra using completions of bornological V-algebras. This leads us to a functorial chain complex for a finitely generated commutative algebra over the residue field k that computes its rigid cohomology in the sense of Berthelot. © 2018 Elsevier B.V. |
format |
JOUR |
author |
Cortiñas, G. Cuntz, J. Meyer, R. Tamme, G. |
author_facet |
Cortiñas, G. Cuntz, J. Meyer, R. Tamme, G. |
author_sort |
Cortiñas, G. |
title |
Weak completions, bornologies and rigid cohomology |
title_short |
Weak completions, bornologies and rigid cohomology |
title_full |
Weak completions, bornologies and rigid cohomology |
title_fullStr |
Weak completions, bornologies and rigid cohomology |
title_full_unstemmed |
Weak completions, bornologies and rigid cohomology |
title_sort |
weak completions, bornologies and rigid cohomology |
url |
http://hdl.handle.net/20.500.12110/paper_03930440_v129_n_p192_Cortinas |
work_keys_str_mv |
AT cortinasg weakcompletionsbornologiesandrigidcohomology AT cuntzj weakcompletionsbornologiesandrigidcohomology AT meyerr weakcompletionsbornologiesandrigidcohomology AT tammeg weakcompletionsbornologiesandrigidcohomology |
_version_ |
1807324660462780416 |