Weak completions, bornologies and rigid cohomology

Let V be a complete discrete valuation ring with residue field k of positive characteristic and with fraction field K of characteristic 0. We clarify the analysis behind the Monsky–Washnitzer completion of a commutative V-algebra using completions of bornological V-algebras. This leads us to a funct...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Cortiñas, G., Cuntz, J., Meyer, R., Tamme, G.
Formato: JOUR
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_03930440_v129_n_p192_Cortinas
Aporte de:
id todo:paper_03930440_v129_n_p192_Cortinas
record_format dspace
spelling todo:paper_03930440_v129_n_p192_Cortinas2023-10-03T15:33:58Z Weak completions, bornologies and rigid cohomology Cortiñas, G. Cuntz, J. Meyer, R. Tamme, G. Algebraic geometry Bornological algebras Cyclic homology Overconvergent completions Positive characteristic Rigid cohomology Let V be a complete discrete valuation ring with residue field k of positive characteristic and with fraction field K of characteristic 0. We clarify the analysis behind the Monsky–Washnitzer completion of a commutative V-algebra using completions of bornological V-algebras. This leads us to a functorial chain complex for a finitely generated commutative algebra over the residue field k that computes its rigid cohomology in the sense of Berthelot. © 2018 Elsevier B.V. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_03930440_v129_n_p192_Cortinas
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Algebraic geometry
Bornological algebras
Cyclic homology
Overconvergent completions
Positive characteristic
Rigid cohomology
spellingShingle Algebraic geometry
Bornological algebras
Cyclic homology
Overconvergent completions
Positive characteristic
Rigid cohomology
Cortiñas, G.
Cuntz, J.
Meyer, R.
Tamme, G.
Weak completions, bornologies and rigid cohomology
topic_facet Algebraic geometry
Bornological algebras
Cyclic homology
Overconvergent completions
Positive characteristic
Rigid cohomology
description Let V be a complete discrete valuation ring with residue field k of positive characteristic and with fraction field K of characteristic 0. We clarify the analysis behind the Monsky–Washnitzer completion of a commutative V-algebra using completions of bornological V-algebras. This leads us to a functorial chain complex for a finitely generated commutative algebra over the residue field k that computes its rigid cohomology in the sense of Berthelot. © 2018 Elsevier B.V.
format JOUR
author Cortiñas, G.
Cuntz, J.
Meyer, R.
Tamme, G.
author_facet Cortiñas, G.
Cuntz, J.
Meyer, R.
Tamme, G.
author_sort Cortiñas, G.
title Weak completions, bornologies and rigid cohomology
title_short Weak completions, bornologies and rigid cohomology
title_full Weak completions, bornologies and rigid cohomology
title_fullStr Weak completions, bornologies and rigid cohomology
title_full_unstemmed Weak completions, bornologies and rigid cohomology
title_sort weak completions, bornologies and rigid cohomology
url http://hdl.handle.net/20.500.12110/paper_03930440_v129_n_p192_Cortinas
work_keys_str_mv AT cortinasg weakcompletionsbornologiesandrigidcohomology
AT cuntzj weakcompletionsbornologiesandrigidcohomology
AT meyerr weakcompletionsbornologiesandrigidcohomology
AT tammeg weakcompletionsbornologiesandrigidcohomology
_version_ 1807324660462780416