An elementary proof of Sylvester's double sums for subresultants

In 1853 Sylvester stated and proved an elegant formula that expresses the polynomial subresultants in terms of the roots of the input polynomials. Sylvester's formula was also recently proved by Lascoux and Pragacz using multi-Schur functions and divided differences. In this paper, we provide a...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: D'Andrea, C., Hong, H., Krick, T., Szanto, A.
Formato: JOUR
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_07477171_v42_n3_p290_DAndrea
Aporte de:
id todo:paper_07477171_v42_n3_p290_DAndrea
record_format dspace
spelling todo:paper_07477171_v42_n3_p290_DAndrea2023-10-03T15:38:55Z An elementary proof of Sylvester's double sums for subresultants D'Andrea, C. Hong, H. Krick, T. Szanto, A. Double-sum formula Subresultants Vandermonde determinant In 1853 Sylvester stated and proved an elegant formula that expresses the polynomial subresultants in terms of the roots of the input polynomials. Sylvester's formula was also recently proved by Lascoux and Pragacz using multi-Schur functions and divided differences. In this paper, we provide an elementary proof that uses only basic properties of matrix multiplication and Vandermonde determinants. © 2006 Elsevier Ltd. All rights reserved. Fil:D'Andrea, C. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Krick, T. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_07477171_v42_n3_p290_DAndrea
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Double-sum formula
Subresultants
Vandermonde determinant
spellingShingle Double-sum formula
Subresultants
Vandermonde determinant
D'Andrea, C.
Hong, H.
Krick, T.
Szanto, A.
An elementary proof of Sylvester's double sums for subresultants
topic_facet Double-sum formula
Subresultants
Vandermonde determinant
description In 1853 Sylvester stated and proved an elegant formula that expresses the polynomial subresultants in terms of the roots of the input polynomials. Sylvester's formula was also recently proved by Lascoux and Pragacz using multi-Schur functions and divided differences. In this paper, we provide an elementary proof that uses only basic properties of matrix multiplication and Vandermonde determinants. © 2006 Elsevier Ltd. All rights reserved.
format JOUR
author D'Andrea, C.
Hong, H.
Krick, T.
Szanto, A.
author_facet D'Andrea, C.
Hong, H.
Krick, T.
Szanto, A.
author_sort D'Andrea, C.
title An elementary proof of Sylvester's double sums for subresultants
title_short An elementary proof of Sylvester's double sums for subresultants
title_full An elementary proof of Sylvester's double sums for subresultants
title_fullStr An elementary proof of Sylvester's double sums for subresultants
title_full_unstemmed An elementary proof of Sylvester's double sums for subresultants
title_sort elementary proof of sylvester's double sums for subresultants
url http://hdl.handle.net/20.500.12110/paper_07477171_v42_n3_p290_DAndrea
work_keys_str_mv AT dandreac anelementaryproofofsylvestersdoublesumsforsubresultants
AT hongh anelementaryproofofsylvestersdoublesumsforsubresultants
AT krickt anelementaryproofofsylvestersdoublesumsforsubresultants
AT szantoa anelementaryproofofsylvestersdoublesumsforsubresultants
AT dandreac elementaryproofofsylvestersdoublesumsforsubresultants
AT hongh elementaryproofofsylvestersdoublesumsforsubresultants
AT krickt elementaryproofofsylvestersdoublesumsforsubresultants
AT szantoa elementaryproofofsylvestersdoublesumsforsubresultants
_version_ 1807320976939024384