An elementary proof of Sylvester's double sums for subresultants
In 1853 Sylvester stated and proved an elegant formula that expresses the polynomial subresultants in terms of the roots of the input polynomials. Sylvester's formula was also recently proved by Lascoux and Pragacz using multi-Schur functions and divided differences. In this paper, we provide a...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_07477171_v42_n3_p290_DAndrea |
Aporte de: |
id |
todo:paper_07477171_v42_n3_p290_DAndrea |
---|---|
record_format |
dspace |
spelling |
todo:paper_07477171_v42_n3_p290_DAndrea2023-10-03T15:38:55Z An elementary proof of Sylvester's double sums for subresultants D'Andrea, C. Hong, H. Krick, T. Szanto, A. Double-sum formula Subresultants Vandermonde determinant In 1853 Sylvester stated and proved an elegant formula that expresses the polynomial subresultants in terms of the roots of the input polynomials. Sylvester's formula was also recently proved by Lascoux and Pragacz using multi-Schur functions and divided differences. In this paper, we provide an elementary proof that uses only basic properties of matrix multiplication and Vandermonde determinants. © 2006 Elsevier Ltd. All rights reserved. Fil:D'Andrea, C. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Krick, T. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_07477171_v42_n3_p290_DAndrea |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
topic |
Double-sum formula Subresultants Vandermonde determinant |
spellingShingle |
Double-sum formula Subresultants Vandermonde determinant D'Andrea, C. Hong, H. Krick, T. Szanto, A. An elementary proof of Sylvester's double sums for subresultants |
topic_facet |
Double-sum formula Subresultants Vandermonde determinant |
description |
In 1853 Sylvester stated and proved an elegant formula that expresses the polynomial subresultants in terms of the roots of the input polynomials. Sylvester's formula was also recently proved by Lascoux and Pragacz using multi-Schur functions and divided differences. In this paper, we provide an elementary proof that uses only basic properties of matrix multiplication and Vandermonde determinants. © 2006 Elsevier Ltd. All rights reserved. |
format |
JOUR |
author |
D'Andrea, C. Hong, H. Krick, T. Szanto, A. |
author_facet |
D'Andrea, C. Hong, H. Krick, T. Szanto, A. |
author_sort |
D'Andrea, C. |
title |
An elementary proof of Sylvester's double sums for subresultants |
title_short |
An elementary proof of Sylvester's double sums for subresultants |
title_full |
An elementary proof of Sylvester's double sums for subresultants |
title_fullStr |
An elementary proof of Sylvester's double sums for subresultants |
title_full_unstemmed |
An elementary proof of Sylvester's double sums for subresultants |
title_sort |
elementary proof of sylvester's double sums for subresultants |
url |
http://hdl.handle.net/20.500.12110/paper_07477171_v42_n3_p290_DAndrea |
work_keys_str_mv |
AT dandreac anelementaryproofofsylvestersdoublesumsforsubresultants AT hongh anelementaryproofofsylvestersdoublesumsforsubresultants AT krickt anelementaryproofofsylvestersdoublesumsforsubresultants AT szantoa anelementaryproofofsylvestersdoublesumsforsubresultants AT dandreac elementaryproofofsylvestersdoublesumsforsubresultants AT hongh elementaryproofofsylvestersdoublesumsforsubresultants AT krickt elementaryproofofsylvestersdoublesumsforsubresultants AT szantoa elementaryproofofsylvestersdoublesumsforsubresultants |
_version_ |
1807320976939024384 |