An elementary proof of Sylvester's double sums for subresultants
In 1853 Sylvester stated and proved an elegant formula that expresses the polynomial subresultants in terms of the roots of the input polynomials. Sylvester's formula was also recently proved by Lascoux and Pragacz using multi-Schur functions and divided differences. In this paper, we provide a...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_07477171_v42_n3_p290_DAndrea |
Aporte de: |
Sumario: | In 1853 Sylvester stated and proved an elegant formula that expresses the polynomial subresultants in terms of the roots of the input polynomials. Sylvester's formula was also recently proved by Lascoux and Pragacz using multi-Schur functions and divided differences. In this paper, we provide an elementary proof that uses only basic properties of matrix multiplication and Vandermonde determinants. © 2006 Elsevier Ltd. All rights reserved. |
---|