Mass-lumping or not mass-lumping for eigenvalue problems

In this article we analyze the effect of mass-lumping in the linear triangular finite element approximation of second-order elliptic eigenvalue problems. We prove that the eigenvalue obtained by using mass-lumping is always below the one obtained with exact integration. For singular eigenfunctions,...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Armentano, M.G., Durán, R.G.
Formato: JOUR
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_0749159X_v19_n5_p653_Armentano
Aporte de:
id todo:paper_0749159X_v19_n5_p653_Armentano
record_format dspace
spelling todo:paper_0749159X_v19_n5_p653_Armentano2023-10-03T15:39:34Z Mass-lumping or not mass-lumping for eigenvalue problems Armentano, M.G. Durán, R.G. Eigenvalue problems Finite elements Mass-lumping In this article we analyze the effect of mass-lumping in the linear triangular finite element approximation of second-order elliptic eigenvalue problems. We prove that the eigenvalue obtained by using mass-lumping is always below the one obtained with exact integration. For singular eigenfunctions, as those arising in non convex polygons, we prove that the eigenvalue obtained with mass-lumping is above the exact eigenvalue when the mesh size is small enough. So, we conclude that the use of mass-lumping is convenient in the singular case. When the eigenfunction is smooth several numerical experiments suggest that the eigenvalue computed with mass-lumping is below the exact one if the mesh is not too coarse. © 2003 Wiley Periodicals, Inc. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_0749159X_v19_n5_p653_Armentano
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Eigenvalue problems
Finite elements
Mass-lumping
spellingShingle Eigenvalue problems
Finite elements
Mass-lumping
Armentano, M.G.
Durán, R.G.
Mass-lumping or not mass-lumping for eigenvalue problems
topic_facet Eigenvalue problems
Finite elements
Mass-lumping
description In this article we analyze the effect of mass-lumping in the linear triangular finite element approximation of second-order elliptic eigenvalue problems. We prove that the eigenvalue obtained by using mass-lumping is always below the one obtained with exact integration. For singular eigenfunctions, as those arising in non convex polygons, we prove that the eigenvalue obtained with mass-lumping is above the exact eigenvalue when the mesh size is small enough. So, we conclude that the use of mass-lumping is convenient in the singular case. When the eigenfunction is smooth several numerical experiments suggest that the eigenvalue computed with mass-lumping is below the exact one if the mesh is not too coarse. © 2003 Wiley Periodicals, Inc.
format JOUR
author Armentano, M.G.
Durán, R.G.
author_facet Armentano, M.G.
Durán, R.G.
author_sort Armentano, M.G.
title Mass-lumping or not mass-lumping for eigenvalue problems
title_short Mass-lumping or not mass-lumping for eigenvalue problems
title_full Mass-lumping or not mass-lumping for eigenvalue problems
title_fullStr Mass-lumping or not mass-lumping for eigenvalue problems
title_full_unstemmed Mass-lumping or not mass-lumping for eigenvalue problems
title_sort mass-lumping or not mass-lumping for eigenvalue problems
url http://hdl.handle.net/20.500.12110/paper_0749159X_v19_n5_p653_Armentano
work_keys_str_mv AT armentanomg masslumpingornotmasslumpingforeigenvalueproblems
AT duranrg masslumpingornotmasslumpingforeigenvalueproblems
_version_ 1807317984280051712