Stability results for the N-dimensional Schiffer conjecture via a perturbation method
Given a eigenvalue μ2 0m of -Δ in the unit ball B1, with Neumann boundary conditions, we prove that there exists a class D of C0,1-domains, depending on μ0m, such that if u is a no trivial solution to the following problem Δu + μu = 0 in Ω, u = 0 on ∂Ω, and ∫∂Ω∂nu = 0, with Ω ∈ D, and μ = μ20 m +o(1...
Guardado en:
Autor principal: | |
---|---|
Formato: | JOUR |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_09442669_v50_n1-2_p305_Canuto |
Aporte de: |
id |
todo:paper_09442669_v50_n1-2_p305_Canuto |
---|---|
record_format |
dspace |
spelling |
todo:paper_09442669_v50_n1-2_p305_Canuto2023-10-03T15:49:13Z Stability results for the N-dimensional Schiffer conjecture via a perturbation method Canuto, B. Given a eigenvalue μ2 0m of -Δ in the unit ball B1, with Neumann boundary conditions, we prove that there exists a class D of C0,1-domains, depending on μ0m, such that if u is a no trivial solution to the following problem Δu + μu = 0 in Ω, u = 0 on ∂Ω, and ∫∂Ω∂nu = 0, with Ω ∈ D, and μ = μ20 m +o(1), then μ is a ball. Here μ is a eigenvalue of -Δ in Ω, with Neumann boundary conditions. © 2013 Springer-Verlag Berlin Heidelberg. Fil:Canuto, B. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_09442669_v50_n1-2_p305_Canuto |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
description |
Given a eigenvalue μ2 0m of -Δ in the unit ball B1, with Neumann boundary conditions, we prove that there exists a class D of C0,1-domains, depending on μ0m, such that if u is a no trivial solution to the following problem Δu + μu = 0 in Ω, u = 0 on ∂Ω, and ∫∂Ω∂nu = 0, with Ω ∈ D, and μ = μ20 m +o(1), then μ is a ball. Here μ is a eigenvalue of -Δ in Ω, with Neumann boundary conditions. © 2013 Springer-Verlag Berlin Heidelberg. |
format |
JOUR |
author |
Canuto, B. |
spellingShingle |
Canuto, B. Stability results for the N-dimensional Schiffer conjecture via a perturbation method |
author_facet |
Canuto, B. |
author_sort |
Canuto, B. |
title |
Stability results for the N-dimensional Schiffer conjecture via a perturbation method |
title_short |
Stability results for the N-dimensional Schiffer conjecture via a perturbation method |
title_full |
Stability results for the N-dimensional Schiffer conjecture via a perturbation method |
title_fullStr |
Stability results for the N-dimensional Schiffer conjecture via a perturbation method |
title_full_unstemmed |
Stability results for the N-dimensional Schiffer conjecture via a perturbation method |
title_sort |
stability results for the n-dimensional schiffer conjecture via a perturbation method |
url |
http://hdl.handle.net/20.500.12110/paper_09442669_v50_n1-2_p305_Canuto |
work_keys_str_mv |
AT canutob stabilityresultsforthendimensionalschifferconjectureviaaperturbationmethod |
_version_ |
1807321871065022464 |