Monotonicity of solutions for some nonlocal elliptic problems in half-spaces
In this paper we consider classical solutions u of the semilinear fractional problem (- Δ) su= f(u) in R+N with u= 0 in RN\\R+N, where (- Δ) s, 0 < s< 1 , stands for the fractional laplacian, N≥ 2 , R+N={x=(x′,xN)∈RN:xN>0} is the half-space and f∈ C1 is a given function. With no...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_09442669_v56_n2_p_Barrios |
Aporte de: |
id |
todo:paper_09442669_v56_n2_p_Barrios |
---|---|
record_format |
dspace |
spelling |
todo:paper_09442669_v56_n2_p_Barrios2023-10-03T15:49:13Z Monotonicity of solutions for some nonlocal elliptic problems in half-spaces Barrios, B. Del Pezzo, L. García-Melián, J. Quaas, A. 35S15 45M20 47G10 In this paper we consider classical solutions u of the semilinear fractional problem (- Δ) su= f(u) in R+N with u= 0 in RN\\R+N, where (- Δ) s, 0 < s< 1 , stands for the fractional laplacian, N≥ 2 , R+N={x=(x′,xN)∈RN:xN>0} is the half-space and f∈ C1 is a given function. With no additional restriction on the function f, we show that bounded, nonnegative, nontrivial classical solutions are indeed positive in R+N and verify (Formula presented.). This is in contrast with previously known results for the local case s= 1 , where nonnegative solutions which are not positive do exist and the monotonicity property above is not known to hold in general even for positive solutions when f(0) < 0. © 2017, Springer-Verlag Berlin Heidelberg. Fil:Del Pezzo, L. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_09442669_v56_n2_p_Barrios |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
topic |
35S15 45M20 47G10 |
spellingShingle |
35S15 45M20 47G10 Barrios, B. Del Pezzo, L. García-Melián, J. Quaas, A. Monotonicity of solutions for some nonlocal elliptic problems in half-spaces |
topic_facet |
35S15 45M20 47G10 |
description |
In this paper we consider classical solutions u of the semilinear fractional problem (- Δ) su= f(u) in R+N with u= 0 in RN\\R+N, where (- Δ) s, 0 < s< 1 , stands for the fractional laplacian, N≥ 2 , R+N={x=(x′,xN)∈RN:xN>0} is the half-space and f∈ C1 is a given function. With no additional restriction on the function f, we show that bounded, nonnegative, nontrivial classical solutions are indeed positive in R+N and verify (Formula presented.). This is in contrast with previously known results for the local case s= 1 , where nonnegative solutions which are not positive do exist and the monotonicity property above is not known to hold in general even for positive solutions when f(0) < 0. © 2017, Springer-Verlag Berlin Heidelberg. |
format |
JOUR |
author |
Barrios, B. Del Pezzo, L. García-Melián, J. Quaas, A. |
author_facet |
Barrios, B. Del Pezzo, L. García-Melián, J. Quaas, A. |
author_sort |
Barrios, B. |
title |
Monotonicity of solutions for some nonlocal elliptic problems in half-spaces |
title_short |
Monotonicity of solutions for some nonlocal elliptic problems in half-spaces |
title_full |
Monotonicity of solutions for some nonlocal elliptic problems in half-spaces |
title_fullStr |
Monotonicity of solutions for some nonlocal elliptic problems in half-spaces |
title_full_unstemmed |
Monotonicity of solutions for some nonlocal elliptic problems in half-spaces |
title_sort |
monotonicity of solutions for some nonlocal elliptic problems in half-spaces |
url |
http://hdl.handle.net/20.500.12110/paper_09442669_v56_n2_p_Barrios |
work_keys_str_mv |
AT barriosb monotonicityofsolutionsforsomenonlocalellipticproblemsinhalfspaces AT delpezzol monotonicityofsolutionsforsomenonlocalellipticproblemsinhalfspaces AT garciamelianj monotonicityofsolutionsforsomenonlocalellipticproblemsinhalfspaces AT quaasa monotonicityofsolutionsforsomenonlocalellipticproblemsinhalfspaces |
_version_ |
1807317351915323392 |