On the efficiency of effective Nullstellensätze
Let k be an infinite and perfect field, x1, ..., xn indeterminates over k and let f1, ..., fs be polynomials in k[x1, ..., xn] of degree bounded by a given number d, which satisfies d≥n. We prove an effective affine Nullstellensatz of the following particular form: For arbitrary given parameters d,...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_10163328_v3_n1_p56_Giusti |
Aporte de: |
id |
todo:paper_10163328_v3_n1_p56_Giusti |
---|---|
record_format |
dspace |
spelling |
todo:paper_10163328_v3_n1_p56_Giusti2023-10-03T15:56:22Z On the efficiency of effective Nullstellensätze Giusti, M. Heintz, J. Sabia, J. Complexity computer algebra effective Nullstellensatz elimination theory straight-line program Subject classification: 68C25 Let k be an infinite and perfect field, x1, ..., xn indeterminates over k and let f1, ..., fs be polynomials in k[x1, ..., xn] of degree bounded by a given number d, which satisfies d≥n. We prove an effective affine Nullstellensatz of the following particular form: For arbitrary given parameters d, s, n there exists a probabilistic (randomized) arithmetic network over k of size sO(1)dO(n) and depth O(n4log2sd) solving the following task: It decides whether the ideal generated by f1, ..., fs in k[x1, ..., xn] is trivial and, if this is the case, it produces a straight-line program of size sO(1)dO(n) and depth O(n4log2sd) in the function field k(x1, ..., xn) which computes polynomials p1, ..., ps of k[x1, ..., xn] of degree {Mathematical expression} satisfying {Mathematical expression} © 1993 Birkhäuser Verlag. Fil:Sabia, J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_10163328_v3_n1_p56_Giusti |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
topic |
Complexity computer algebra effective Nullstellensatz elimination theory straight-line program Subject classification: 68C25 |
spellingShingle |
Complexity computer algebra effective Nullstellensatz elimination theory straight-line program Subject classification: 68C25 Giusti, M. Heintz, J. Sabia, J. On the efficiency of effective Nullstellensätze |
topic_facet |
Complexity computer algebra effective Nullstellensatz elimination theory straight-line program Subject classification: 68C25 |
description |
Let k be an infinite and perfect field, x1, ..., xn indeterminates over k and let f1, ..., fs be polynomials in k[x1, ..., xn] of degree bounded by a given number d, which satisfies d≥n. We prove an effective affine Nullstellensatz of the following particular form: For arbitrary given parameters d, s, n there exists a probabilistic (randomized) arithmetic network over k of size sO(1)dO(n) and depth O(n4log2sd) solving the following task: It decides whether the ideal generated by f1, ..., fs in k[x1, ..., xn] is trivial and, if this is the case, it produces a straight-line program of size sO(1)dO(n) and depth O(n4log2sd) in the function field k(x1, ..., xn) which computes polynomials p1, ..., ps of k[x1, ..., xn] of degree {Mathematical expression} satisfying {Mathematical expression} © 1993 Birkhäuser Verlag. |
format |
JOUR |
author |
Giusti, M. Heintz, J. Sabia, J. |
author_facet |
Giusti, M. Heintz, J. Sabia, J. |
author_sort |
Giusti, M. |
title |
On the efficiency of effective Nullstellensätze |
title_short |
On the efficiency of effective Nullstellensätze |
title_full |
On the efficiency of effective Nullstellensätze |
title_fullStr |
On the efficiency of effective Nullstellensätze |
title_full_unstemmed |
On the efficiency of effective Nullstellensätze |
title_sort |
on the efficiency of effective nullstellensätze |
url |
http://hdl.handle.net/20.500.12110/paper_10163328_v3_n1_p56_Giusti |
work_keys_str_mv |
AT giustim ontheefficiencyofeffectivenullstellensatze AT heintzj ontheefficiencyofeffectivenullstellensatze AT sabiaj ontheefficiencyofeffectivenullstellensatze |
_version_ |
1807314784211697664 |