On the Exceptional Set for Absolute Continuity of Bernoulli Convolutions
We prove that the set of exceptional λ∈ (1/2,1) such that the associated Bernoulli convolution is singular has zero Hausdorff dimension, and likewise for biased Bernoulli convolutions, with the exceptional set independent of the bias. This improves previous results by Erdös, Kahane, Solomyak, Peres...
Guardado en:
Autor principal: | Shmerkin, P. |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_1016443X_v24_n3_p946_Shmerkin |
Aporte de: |
Ejemplares similares
-
On the Exceptional Set for Absolute Continuity of Bernoulli Convolutions
Publicado: (2014) -
Powers of Distances to Lower Dimensional Sets as Muckenhoupt Weights
Publicado: (2014) -
Powers of Distances to Lower Dimensional Sets as Muckenhoupt Weights
por: Aimar, H., et al. -
Lq dimensions and projections of random measures
por: Galicer, D., et al. -
Hausdorff measure of p-Cantor sets
Publicado: (2004)