Statistical inference in non-Hamiltonian dynamics

We assume that the formal results of the maximum-entropy approach for the description of some quantal systems remain valid in the presence of a perturbation that cannot be formulated in terms of a Hamiltonian, if the dynamical laws for a convenient set of observables are known. As an example we stud...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: De La Mota, V., Hernandez, E.S.
Formato: JOUR
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_10502947_v31_n2_p1095_DeLaMota
Aporte de:
id todo:paper_10502947_v31_n2_p1095_DeLaMota
record_format dspace
spelling todo:paper_10502947_v31_n2_p1095_DeLaMota2023-10-03T15:58:43Z Statistical inference in non-Hamiltonian dynamics De La Mota, V. Hernandez, E.S. We assume that the formal results of the maximum-entropy approach for the description of some quantal systems remain valid in the presence of a perturbation that cannot be formulated in terms of a Hamiltonian, if the dynamical laws for a convenient set of observables are known. As an example we study the harmonic motion of a quantal object coupled to a heat reservoir (a) reversibly and (b) irreversibly. In case (b), the data concerning the evolution of the individual fluctuations permit the construction of a density matrix for all times. © 1985 The American Physical Society. Fil:De La Mota, V. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Hernandez, E.S. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_10502947_v31_n2_p1095_DeLaMota
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
description We assume that the formal results of the maximum-entropy approach for the description of some quantal systems remain valid in the presence of a perturbation that cannot be formulated in terms of a Hamiltonian, if the dynamical laws for a convenient set of observables are known. As an example we study the harmonic motion of a quantal object coupled to a heat reservoir (a) reversibly and (b) irreversibly. In case (b), the data concerning the evolution of the individual fluctuations permit the construction of a density matrix for all times. © 1985 The American Physical Society.
format JOUR
author De La Mota, V.
Hernandez, E.S.
spellingShingle De La Mota, V.
Hernandez, E.S.
Statistical inference in non-Hamiltonian dynamics
author_facet De La Mota, V.
Hernandez, E.S.
author_sort De La Mota, V.
title Statistical inference in non-Hamiltonian dynamics
title_short Statistical inference in non-Hamiltonian dynamics
title_full Statistical inference in non-Hamiltonian dynamics
title_fullStr Statistical inference in non-Hamiltonian dynamics
title_full_unstemmed Statistical inference in non-Hamiltonian dynamics
title_sort statistical inference in non-hamiltonian dynamics
url http://hdl.handle.net/20.500.12110/paper_10502947_v31_n2_p1095_DeLaMota
work_keys_str_mv AT delamotav statisticalinferenceinnonhamiltoniandynamics
AT hernandezes statisticalinferenceinnonhamiltoniandynamics
_version_ 1807322296700895232