Statistical inference in non-Hamiltonian dynamics
We assume that the formal results of the maximum-entropy approach for the description of some quantal systems remain valid in the presence of a perturbation that cannot be formulated in terms of a Hamiltonian, if the dynamical laws for a convenient set of observables are known. As an example we stud...
Guardado en:
Autores principales: | , |
---|---|
Formato: | JOUR |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_10502947_v31_n2_p1095_DeLaMota |
Aporte de: |
id |
todo:paper_10502947_v31_n2_p1095_DeLaMota |
---|---|
record_format |
dspace |
spelling |
todo:paper_10502947_v31_n2_p1095_DeLaMota2023-10-03T15:58:43Z Statistical inference in non-Hamiltonian dynamics De La Mota, V. Hernandez, E.S. We assume that the formal results of the maximum-entropy approach for the description of some quantal systems remain valid in the presence of a perturbation that cannot be formulated in terms of a Hamiltonian, if the dynamical laws for a convenient set of observables are known. As an example we study the harmonic motion of a quantal object coupled to a heat reservoir (a) reversibly and (b) irreversibly. In case (b), the data concerning the evolution of the individual fluctuations permit the construction of a density matrix for all times. © 1985 The American Physical Society. Fil:De La Mota, V. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Hernandez, E.S. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_10502947_v31_n2_p1095_DeLaMota |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
description |
We assume that the formal results of the maximum-entropy approach for the description of some quantal systems remain valid in the presence of a perturbation that cannot be formulated in terms of a Hamiltonian, if the dynamical laws for a convenient set of observables are known. As an example we study the harmonic motion of a quantal object coupled to a heat reservoir (a) reversibly and (b) irreversibly. In case (b), the data concerning the evolution of the individual fluctuations permit the construction of a density matrix for all times. © 1985 The American Physical Society. |
format |
JOUR |
author |
De La Mota, V. Hernandez, E.S. |
spellingShingle |
De La Mota, V. Hernandez, E.S. Statistical inference in non-Hamiltonian dynamics |
author_facet |
De La Mota, V. Hernandez, E.S. |
author_sort |
De La Mota, V. |
title |
Statistical inference in non-Hamiltonian dynamics |
title_short |
Statistical inference in non-Hamiltonian dynamics |
title_full |
Statistical inference in non-Hamiltonian dynamics |
title_fullStr |
Statistical inference in non-Hamiltonian dynamics |
title_full_unstemmed |
Statistical inference in non-Hamiltonian dynamics |
title_sort |
statistical inference in non-hamiltonian dynamics |
url |
http://hdl.handle.net/20.500.12110/paper_10502947_v31_n2_p1095_DeLaMota |
work_keys_str_mv |
AT delamotav statisticalinferenceinnonhamiltoniandynamics AT hernandezes statisticalinferenceinnonhamiltoniandynamics |
_version_ |
1807322296700895232 |