Many-body dynamics on a time-dependent basis

We propose a method of solution of the many-body Schrödinger equation that involves an expansion of the wave function in terms of a finite, time-dependent basis of a relevant subspace. The equations of motion for the expansion coefficients generalize previous proposals of approximate dynamics. The m...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Hernandez, E.S., Jezek, D.M.
Formato: JOUR
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_10502947_v38_n9_p4455_Hernandez
Aporte de:
id todo:paper_10502947_v38_n9_p4455_Hernandez
record_format dspace
spelling todo:paper_10502947_v38_n9_p4455_Hernandez2023-10-03T15:58:49Z Many-body dynamics on a time-dependent basis Hernandez, E.S. Jezek, D.M. We propose a method of solution of the many-body Schrödinger equation that involves an expansion of the wave function in terms of a finite, time-dependent basis of a relevant subspace. The equations of motion for the expansion coefficients generalize previous proposals of approximate dynamics. The method is illustrated in the case of an N-particle system with an SU(2) Hamiltonian, and it is shown that it improves the approximation that disregards off-diagonal elements of the dynamical matrices. © 1988 The American Physical Society. Fil:Hernandez, E.S. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Jezek, D.M. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_10502947_v38_n9_p4455_Hernandez
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
description We propose a method of solution of the many-body Schrödinger equation that involves an expansion of the wave function in terms of a finite, time-dependent basis of a relevant subspace. The equations of motion for the expansion coefficients generalize previous proposals of approximate dynamics. The method is illustrated in the case of an N-particle system with an SU(2) Hamiltonian, and it is shown that it improves the approximation that disregards off-diagonal elements of the dynamical matrices. © 1988 The American Physical Society.
format JOUR
author Hernandez, E.S.
Jezek, D.M.
spellingShingle Hernandez, E.S.
Jezek, D.M.
Many-body dynamics on a time-dependent basis
author_facet Hernandez, E.S.
Jezek, D.M.
author_sort Hernandez, E.S.
title Many-body dynamics on a time-dependent basis
title_short Many-body dynamics on a time-dependent basis
title_full Many-body dynamics on a time-dependent basis
title_fullStr Many-body dynamics on a time-dependent basis
title_full_unstemmed Many-body dynamics on a time-dependent basis
title_sort many-body dynamics on a time-dependent basis
url http://hdl.handle.net/20.500.12110/paper_10502947_v38_n9_p4455_Hernandez
work_keys_str_mv AT hernandezes manybodydynamicsonatimedependentbasis
AT jezekdm manybodydynamicsonatimedependentbasis
_version_ 1807324077849837568