Many-body dynamics on a time-dependent basis
We propose a method of solution of the many-body Schrödinger equation that involves an expansion of the wave function in terms of a finite, time-dependent basis of a relevant subspace. The equations of motion for the expansion coefficients generalize previous proposals of approximate dynamics. The m...
Guardado en:
Autores principales: | , |
---|---|
Formato: | JOUR |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_10502947_v38_n9_p4455_Hernandez |
Aporte de: |
id |
todo:paper_10502947_v38_n9_p4455_Hernandez |
---|---|
record_format |
dspace |
spelling |
todo:paper_10502947_v38_n9_p4455_Hernandez2023-10-03T15:58:49Z Many-body dynamics on a time-dependent basis Hernandez, E.S. Jezek, D.M. We propose a method of solution of the many-body Schrödinger equation that involves an expansion of the wave function in terms of a finite, time-dependent basis of a relevant subspace. The equations of motion for the expansion coefficients generalize previous proposals of approximate dynamics. The method is illustrated in the case of an N-particle system with an SU(2) Hamiltonian, and it is shown that it improves the approximation that disregards off-diagonal elements of the dynamical matrices. © 1988 The American Physical Society. Fil:Hernandez, E.S. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Jezek, D.M. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_10502947_v38_n9_p4455_Hernandez |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
description |
We propose a method of solution of the many-body Schrödinger equation that involves an expansion of the wave function in terms of a finite, time-dependent basis of a relevant subspace. The equations of motion for the expansion coefficients generalize previous proposals of approximate dynamics. The method is illustrated in the case of an N-particle system with an SU(2) Hamiltonian, and it is shown that it improves the approximation that disregards off-diagonal elements of the dynamical matrices. © 1988 The American Physical Society. |
format |
JOUR |
author |
Hernandez, E.S. Jezek, D.M. |
spellingShingle |
Hernandez, E.S. Jezek, D.M. Many-body dynamics on a time-dependent basis |
author_facet |
Hernandez, E.S. Jezek, D.M. |
author_sort |
Hernandez, E.S. |
title |
Many-body dynamics on a time-dependent basis |
title_short |
Many-body dynamics on a time-dependent basis |
title_full |
Many-body dynamics on a time-dependent basis |
title_fullStr |
Many-body dynamics on a time-dependent basis |
title_full_unstemmed |
Many-body dynamics on a time-dependent basis |
title_sort |
many-body dynamics on a time-dependent basis |
url |
http://hdl.handle.net/20.500.12110/paper_10502947_v38_n9_p4455_Hernandez |
work_keys_str_mv |
AT hernandezes manybodydynamicsonatimedependentbasis AT jezekdm manybodydynamicsonatimedependentbasis |
_version_ |
1807324077849837568 |