Classical and quantum description of the two-dimensional simple harmonic oscillator in elliptic coordinates

The Schrödinger equation for the two-dimensional simple harmonic oscillator is solved using elliptic coordinates where it is separable. The separability of the problem in such coordinates is independent of the selection of the focal distance. The solutions are labeled by the total number of quanta N...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Fendrik, A.J., Bernath, M.
Formato: JOUR
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_10502947_v40_n8_p4215_Fendrik
Aporte de:
id todo:paper_10502947_v40_n8_p4215_Fendrik
record_format dspace
spelling todo:paper_10502947_v40_n8_p4215_Fendrik2023-10-03T15:58:51Z Classical and quantum description of the two-dimensional simple harmonic oscillator in elliptic coordinates Fendrik, A.J. Bernath, M. The Schrödinger equation for the two-dimensional simple harmonic oscillator is solved using elliptic coordinates where it is separable. The separability of the problem in such coordinates is independent of the selection of the focal distance. The solutions are labeled by the total number of quanta N and by a set of characteristic values b corresponding to the eigenvalues of an observable B^, which does not commute with L^, the total angular momentum or H^x, the energy associated with the x degree of freedom. The well-known quantum energies as well as the characteristic values are obtained by imposing physical polynomial solutions. © 1989 The American Physical Society. Fil:Fendrik, A.J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Bernath, M. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_10502947_v40_n8_p4215_Fendrik
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
description The Schrödinger equation for the two-dimensional simple harmonic oscillator is solved using elliptic coordinates where it is separable. The separability of the problem in such coordinates is independent of the selection of the focal distance. The solutions are labeled by the total number of quanta N and by a set of characteristic values b corresponding to the eigenvalues of an observable B^, which does not commute with L^, the total angular momentum or H^x, the energy associated with the x degree of freedom. The well-known quantum energies as well as the characteristic values are obtained by imposing physical polynomial solutions. © 1989 The American Physical Society.
format JOUR
author Fendrik, A.J.
Bernath, M.
spellingShingle Fendrik, A.J.
Bernath, M.
Classical and quantum description of the two-dimensional simple harmonic oscillator in elliptic coordinates
author_facet Fendrik, A.J.
Bernath, M.
author_sort Fendrik, A.J.
title Classical and quantum description of the two-dimensional simple harmonic oscillator in elliptic coordinates
title_short Classical and quantum description of the two-dimensional simple harmonic oscillator in elliptic coordinates
title_full Classical and quantum description of the two-dimensional simple harmonic oscillator in elliptic coordinates
title_fullStr Classical and quantum description of the two-dimensional simple harmonic oscillator in elliptic coordinates
title_full_unstemmed Classical and quantum description of the two-dimensional simple harmonic oscillator in elliptic coordinates
title_sort classical and quantum description of the two-dimensional simple harmonic oscillator in elliptic coordinates
url http://hdl.handle.net/20.500.12110/paper_10502947_v40_n8_p4215_Fendrik
work_keys_str_mv AT fendrikaj classicalandquantumdescriptionofthetwodimensionalsimpleharmonicoscillatorinellipticcoordinates
AT bernathm classicalandquantumdescriptionofthetwodimensionalsimpleharmonicoscillatorinellipticcoordinates
_version_ 1807314609341726720