Reverse Hölder Property for Strong Weights and General Measures

We present dimension-free reverse Hölder inequalities for strong Ap∗ weights, 1 ≤ p< ∞. We also provide a proof for the full range of local integrability of A1∗ weights. The common ingredient is a multidimensional version of Riesz’s “rising sun” lemma. Our results are valid for any nonnegative Ra...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Luque, T., Pérez, C., Rela, E.
Formato: JOUR
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_10506926_v27_n1_p162_Luque
Aporte de:
id todo:paper_10506926_v27_n1_p162_Luque
record_format dspace
spelling todo:paper_10506926_v27_n1_p162_Luque2023-10-03T16:00:28Z Reverse Hölder Property for Strong Weights and General Measures Luque, T. Pérez, C. Rela, E. Maximal functions Muckenhoupt weights Multiparameter harmonic analysis Reverse Hölder inequality We present dimension-free reverse Hölder inequalities for strong Ap∗ weights, 1 ≤ p< ∞. We also provide a proof for the full range of local integrability of A1∗ weights. The common ingredient is a multidimensional version of Riesz’s “rising sun” lemma. Our results are valid for any nonnegative Radon measure with no atoms. For p= ∞, we also provide a reverse Hölder inequality for certain product measures. As a corollary we derive mixed Ap∗-A∞∗ weighted estimates. © 2016, Mathematica Josephina, Inc. Fil:Rela, E. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_10506926_v27_n1_p162_Luque
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Maximal functions
Muckenhoupt weights
Multiparameter harmonic analysis
Reverse Hölder inequality
spellingShingle Maximal functions
Muckenhoupt weights
Multiparameter harmonic analysis
Reverse Hölder inequality
Luque, T.
Pérez, C.
Rela, E.
Reverse Hölder Property for Strong Weights and General Measures
topic_facet Maximal functions
Muckenhoupt weights
Multiparameter harmonic analysis
Reverse Hölder inequality
description We present dimension-free reverse Hölder inequalities for strong Ap∗ weights, 1 ≤ p< ∞. We also provide a proof for the full range of local integrability of A1∗ weights. The common ingredient is a multidimensional version of Riesz’s “rising sun” lemma. Our results are valid for any nonnegative Radon measure with no atoms. For p= ∞, we also provide a reverse Hölder inequality for certain product measures. As a corollary we derive mixed Ap∗-A∞∗ weighted estimates. © 2016, Mathematica Josephina, Inc.
format JOUR
author Luque, T.
Pérez, C.
Rela, E.
author_facet Luque, T.
Pérez, C.
Rela, E.
author_sort Luque, T.
title Reverse Hölder Property for Strong Weights and General Measures
title_short Reverse Hölder Property for Strong Weights and General Measures
title_full Reverse Hölder Property for Strong Weights and General Measures
title_fullStr Reverse Hölder Property for Strong Weights and General Measures
title_full_unstemmed Reverse Hölder Property for Strong Weights and General Measures
title_sort reverse hölder property for strong weights and general measures
url http://hdl.handle.net/20.500.12110/paper_10506926_v27_n1_p162_Luque
work_keys_str_mv AT luquet reverseholderpropertyforstrongweightsandgeneralmeasures
AT perezc reverseholderpropertyforstrongweightsandgeneralmeasures
AT relae reverseholderpropertyforstrongweightsandgeneralmeasures
_version_ 1807324133686509568