Cells segmentation from 3-D confocal images of early zebrafish embryogenesis

We designed a strategy for extracting the shapes of cell membranes and nuclei from time lapse confocal images taken throughout early zebrafish embryogenesis using a partial-differential-equation-based segmentation. This segmentation step is a prerequisite for an accurate quantitative analysis of cel...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Zanella, C., Campana, M., Rizzi, B., Melani, C., Sanguinetti, G., Bourgine, P., Mikula, K., Peyrieras, N., Sarti, A.
Formato: JOUR
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_10577149_v19_n3_p770_Zanella
Aporte de:
id todo:paper_10577149_v19_n3_p770_Zanella
record_format dspace
spelling todo:paper_10577149_v19_n3_p770_Zanella2023-10-03T16:00:55Z Cells segmentation from 3-D confocal images of early zebrafish embryogenesis Zanella, C. Campana, M. Rizzi, B. Melani, C. Sanguinetti, G. Bourgine, P. Mikula, K. Peyrieras, N. Sarti, A. Bioimaging Confocal imaging Image processing Segmentation Subjective surfaces Algorithm validation Automated algorithms Bio-imaging Biological process Cell shapes Classical methods Confocal image Confocal imaging Edge preserving Embryonic cells Image features Morphodynamics Quantitative analysis Sub-cellular Zebrafish Zebrafish embryos Cell membranes Cytology Image processing Imaging systems Signal to noise ratio Three dimensional Edge detection algorithm animal animal embryo article cell division cell membrane cell nucleus cell shape cytology image processing methodology prenatal development reproducibility zebra fish Algorithms Animals Cell Division Cell Membrane Cell Nucleus Cell Shape Embryo, Nonmammalian Image Processing, Computer-Assisted Reproducibility of Results Zebrafish We designed a strategy for extracting the shapes of cell membranes and nuclei from time lapse confocal images taken throughout early zebrafish embryogenesis using a partial-differential-equation-based segmentation. This segmentation step is a prerequisite for an accurate quantitative analysis of cell morphodynamics during embryogenesis and it is the basis for an integrated understanding of biological processes. The segmentation of embryonic cells requires live zebrafish embryos fluorescently labeled to highlight sub-cellular structures and designing specific algorithms by adapting classical methods to image features. Our strategy includes the following steps: the signal-to-noise ratio is first improved by an edge-preserving filtering, then the cell shape is reconstructed applying a fully automated algorithm based on a generalized version of the Subjective Surfaces technique. Finally we present a procedure for the algorithm validation either from the accuracy and the robustness perspective. © 2010 IEEE. Fil:Melani, C. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_10577149_v19_n3_p770_Zanella
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Bioimaging
Confocal imaging
Image processing
Segmentation
Subjective surfaces
Algorithm validation
Automated algorithms
Bio-imaging
Biological process
Cell shapes
Classical methods
Confocal image
Confocal imaging
Edge preserving
Embryonic cells
Image features
Morphodynamics
Quantitative analysis
Sub-cellular
Zebrafish
Zebrafish embryos
Cell membranes
Cytology
Image processing
Imaging systems
Signal to noise ratio
Three dimensional
Edge detection
algorithm
animal
animal embryo
article
cell division
cell membrane
cell nucleus
cell shape
cytology
image processing
methodology
prenatal development
reproducibility
zebra fish
Algorithms
Animals
Cell Division
Cell Membrane
Cell Nucleus
Cell Shape
Embryo, Nonmammalian
Image Processing, Computer-Assisted
Reproducibility of Results
Zebrafish
spellingShingle Bioimaging
Confocal imaging
Image processing
Segmentation
Subjective surfaces
Algorithm validation
Automated algorithms
Bio-imaging
Biological process
Cell shapes
Classical methods
Confocal image
Confocal imaging
Edge preserving
Embryonic cells
Image features
Morphodynamics
Quantitative analysis
Sub-cellular
Zebrafish
Zebrafish embryos
Cell membranes
Cytology
Image processing
Imaging systems
Signal to noise ratio
Three dimensional
Edge detection
algorithm
animal
animal embryo
article
cell division
cell membrane
cell nucleus
cell shape
cytology
image processing
methodology
prenatal development
reproducibility
zebra fish
Algorithms
Animals
Cell Division
Cell Membrane
Cell Nucleus
Cell Shape
Embryo, Nonmammalian
Image Processing, Computer-Assisted
Reproducibility of Results
Zebrafish
Zanella, C.
Campana, M.
Rizzi, B.
Melani, C.
Sanguinetti, G.
Bourgine, P.
Mikula, K.
Peyrieras, N.
Sarti, A.
Cells segmentation from 3-D confocal images of early zebrafish embryogenesis
topic_facet Bioimaging
Confocal imaging
Image processing
Segmentation
Subjective surfaces
Algorithm validation
Automated algorithms
Bio-imaging
Biological process
Cell shapes
Classical methods
Confocal image
Confocal imaging
Edge preserving
Embryonic cells
Image features
Morphodynamics
Quantitative analysis
Sub-cellular
Zebrafish
Zebrafish embryos
Cell membranes
Cytology
Image processing
Imaging systems
Signal to noise ratio
Three dimensional
Edge detection
algorithm
animal
animal embryo
article
cell division
cell membrane
cell nucleus
cell shape
cytology
image processing
methodology
prenatal development
reproducibility
zebra fish
Algorithms
Animals
Cell Division
Cell Membrane
Cell Nucleus
Cell Shape
Embryo, Nonmammalian
Image Processing, Computer-Assisted
Reproducibility of Results
Zebrafish
description We designed a strategy for extracting the shapes of cell membranes and nuclei from time lapse confocal images taken throughout early zebrafish embryogenesis using a partial-differential-equation-based segmentation. This segmentation step is a prerequisite for an accurate quantitative analysis of cell morphodynamics during embryogenesis and it is the basis for an integrated understanding of biological processes. The segmentation of embryonic cells requires live zebrafish embryos fluorescently labeled to highlight sub-cellular structures and designing specific algorithms by adapting classical methods to image features. Our strategy includes the following steps: the signal-to-noise ratio is first improved by an edge-preserving filtering, then the cell shape is reconstructed applying a fully automated algorithm based on a generalized version of the Subjective Surfaces technique. Finally we present a procedure for the algorithm validation either from the accuracy and the robustness perspective. © 2010 IEEE.
format JOUR
author Zanella, C.
Campana, M.
Rizzi, B.
Melani, C.
Sanguinetti, G.
Bourgine, P.
Mikula, K.
Peyrieras, N.
Sarti, A.
author_facet Zanella, C.
Campana, M.
Rizzi, B.
Melani, C.
Sanguinetti, G.
Bourgine, P.
Mikula, K.
Peyrieras, N.
Sarti, A.
author_sort Zanella, C.
title Cells segmentation from 3-D confocal images of early zebrafish embryogenesis
title_short Cells segmentation from 3-D confocal images of early zebrafish embryogenesis
title_full Cells segmentation from 3-D confocal images of early zebrafish embryogenesis
title_fullStr Cells segmentation from 3-D confocal images of early zebrafish embryogenesis
title_full_unstemmed Cells segmentation from 3-D confocal images of early zebrafish embryogenesis
title_sort cells segmentation from 3-d confocal images of early zebrafish embryogenesis
url http://hdl.handle.net/20.500.12110/paper_10577149_v19_n3_p770_Zanella
work_keys_str_mv AT zanellac cellssegmentationfrom3dconfocalimagesofearlyzebrafishembryogenesis
AT campanam cellssegmentationfrom3dconfocalimagesofearlyzebrafishembryogenesis
AT rizzib cellssegmentationfrom3dconfocalimagesofearlyzebrafishembryogenesis
AT melanic cellssegmentationfrom3dconfocalimagesofearlyzebrafishembryogenesis
AT sanguinettig cellssegmentationfrom3dconfocalimagesofearlyzebrafishembryogenesis
AT bourginep cellssegmentationfrom3dconfocalimagesofearlyzebrafishembryogenesis
AT mikulak cellssegmentationfrom3dconfocalimagesofearlyzebrafishembryogenesis
AT peyrierasn cellssegmentationfrom3dconfocalimagesofearlyzebrafishembryogenesis
AT sartia cellssegmentationfrom3dconfocalimagesofearlyzebrafishembryogenesis
_version_ 1807315950836383744