Computing central values of twisted l-series: The case of composite levels
We describe a general method to compute weight- 3 2 modular forms “associated” with a given weight-2 modular form f of level N, and relate its Fourier coefficients to central values of quadratic twists (real and imaginary) of L(f, s). We will focus on examples for levels N = 27, N = 15, and N = 75....
Guardado en:
Autores principales: | , |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_10586458_v17_n4_p459_Pacetti |
Aporte de: |
id |
todo:paper_10586458_v17_n4_p459_Pacetti |
---|---|
record_format |
dspace |
spelling |
todo:paper_10586458_v17_n4_p459_Pacetti2023-10-03T16:00:59Z Computing central values of twisted l-series: The case of composite levels Pacetti, A. Tornaría, G. L-series Quadratic twists Shimura correspondence We describe a general method to compute weight- 3 2 modular forms “associated” with a given weight-2 modular form f of level N, and relate its Fourier coefficients to central values of quadratic twists (real and imaginary) of L(f, s). We will focus on examples for levels N = 27, N = 15, and N = 75. © A K Peters, Ltd. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_10586458_v17_n4_p459_Pacetti |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
topic |
L-series Quadratic twists Shimura correspondence |
spellingShingle |
L-series Quadratic twists Shimura correspondence Pacetti, A. Tornaría, G. Computing central values of twisted l-series: The case of composite levels |
topic_facet |
L-series Quadratic twists Shimura correspondence |
description |
We describe a general method to compute weight- 3 2 modular forms “associated” with a given weight-2 modular form f of level N, and relate its Fourier coefficients to central values of quadratic twists (real and imaginary) of L(f, s). We will focus on examples for levels N = 27, N = 15, and N = 75. © A K Peters, Ltd. |
format |
JOUR |
author |
Pacetti, A. Tornaría, G. |
author_facet |
Pacetti, A. Tornaría, G. |
author_sort |
Pacetti, A. |
title |
Computing central values of twisted l-series: The case of composite levels |
title_short |
Computing central values of twisted l-series: The case of composite levels |
title_full |
Computing central values of twisted l-series: The case of composite levels |
title_fullStr |
Computing central values of twisted l-series: The case of composite levels |
title_full_unstemmed |
Computing central values of twisted l-series: The case of composite levels |
title_sort |
computing central values of twisted l-series: the case of composite levels |
url |
http://hdl.handle.net/20.500.12110/paper_10586458_v17_n4_p459_Pacetti |
work_keys_str_mv |
AT pacettia computingcentralvaluesoftwistedlseriesthecaseofcompositelevels AT tornariag computingcentralvaluesoftwistedlseriesthecaseofcompositelevels |
_version_ |
1807317505965817856 |