On skew braces and their ideals

We define combinatorial representations of finite skew braces and use this idea to produce a database of skew braces of small size. This database is then used to explore different concepts of the theory of skew braces such as ideals, series of ideals, prime, and semiprime ideals, Baer and Wedderburn...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Konovalov, A., Smoktunowicz, A., Vendramin, L.
Formato: INPR
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_10586458_v_n_p_Konovalov
Aporte de:
id todo:paper_10586458_v_n_p_Konovalov
record_format dspace
spelling todo:paper_10586458_v_n_p_Konovalov2023-10-03T16:00:59Z On skew braces and their ideals Konovalov, A. Smoktunowicz, A. Vendramin, L. braces radical rings Yang–Baxter equation We define combinatorial representations of finite skew braces and use this idea to produce a database of skew braces of small size. This database is then used to explore different concepts of the theory of skew braces such as ideals, series of ideals, prime, and semiprime ideals, Baer and Wedderburn radicals and solvability. The article contains several questions. © 2018, © 2018 Taylor & Francis Group, LLC. INPR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_10586458_v_n_p_Konovalov
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic braces
radical rings
Yang–Baxter equation
spellingShingle braces
radical rings
Yang–Baxter equation
Konovalov, A.
Smoktunowicz, A.
Vendramin, L.
On skew braces and their ideals
topic_facet braces
radical rings
Yang–Baxter equation
description We define combinatorial representations of finite skew braces and use this idea to produce a database of skew braces of small size. This database is then used to explore different concepts of the theory of skew braces such as ideals, series of ideals, prime, and semiprime ideals, Baer and Wedderburn radicals and solvability. The article contains several questions. © 2018, © 2018 Taylor & Francis Group, LLC.
format INPR
author Konovalov, A.
Smoktunowicz, A.
Vendramin, L.
author_facet Konovalov, A.
Smoktunowicz, A.
Vendramin, L.
author_sort Konovalov, A.
title On skew braces and their ideals
title_short On skew braces and their ideals
title_full On skew braces and their ideals
title_fullStr On skew braces and their ideals
title_full_unstemmed On skew braces and their ideals
title_sort on skew braces and their ideals
url http://hdl.handle.net/20.500.12110/paper_10586458_v_n_p_Konovalov
work_keys_str_mv AT konovalova onskewbracesandtheirideals
AT smoktunowicza onskewbracesandtheirideals
AT vendraminl onskewbracesandtheirideals
_version_ 1807315215644098560