Asymptotic lower bounds for eigenvalues by nonconforming finite element methods
We analyze the approximation obtained for the eigenvalues of the Laplace operator by the nonconforming piecewise linear finite element of Crouzeix-Raviart. For singular eigenfunctions, as those arising in nonconvex polygons, we prove that the eigenvalues obtained with this method give lower bounds o...
Guardado en:
Autores principales: | , |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_10689613_v17_n_p93_Armentano |
Aporte de: |
id |
todo:paper_10689613_v17_n_p93_Armentano |
---|---|
record_format |
dspace |
spelling |
todo:paper_10689613_v17_n_p93_Armentano2023-10-03T16:02:13Z Asymptotic lower bounds for eigenvalues by nonconforming finite element methods Armentano, M.G. Durán, R.G. Eigenvalue problems Finite elements Nonconforming methods We analyze the approximation obtained for the eigenvalues of the Laplace operator by the nonconforming piecewise linear finite element of Crouzeix-Raviart. For singular eigenfunctions, as those arising in nonconvex polygons, we prove that the eigenvalues obtained with this method give lower bounds of the exact eigenvalues when the mesh size is small enough. Fil:Armentano, M.G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Durán, R.G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_10689613_v17_n_p93_Armentano |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
topic |
Eigenvalue problems Finite elements Nonconforming methods |
spellingShingle |
Eigenvalue problems Finite elements Nonconforming methods Armentano, M.G. Durán, R.G. Asymptotic lower bounds for eigenvalues by nonconforming finite element methods |
topic_facet |
Eigenvalue problems Finite elements Nonconforming methods |
description |
We analyze the approximation obtained for the eigenvalues of the Laplace operator by the nonconforming piecewise linear finite element of Crouzeix-Raviart. For singular eigenfunctions, as those arising in nonconvex polygons, we prove that the eigenvalues obtained with this method give lower bounds of the exact eigenvalues when the mesh size is small enough. |
format |
JOUR |
author |
Armentano, M.G. Durán, R.G. |
author_facet |
Armentano, M.G. Durán, R.G. |
author_sort |
Armentano, M.G. |
title |
Asymptotic lower bounds for eigenvalues by nonconforming finite element methods |
title_short |
Asymptotic lower bounds for eigenvalues by nonconforming finite element methods |
title_full |
Asymptotic lower bounds for eigenvalues by nonconforming finite element methods |
title_fullStr |
Asymptotic lower bounds for eigenvalues by nonconforming finite element methods |
title_full_unstemmed |
Asymptotic lower bounds for eigenvalues by nonconforming finite element methods |
title_sort |
asymptotic lower bounds for eigenvalues by nonconforming finite element methods |
url |
http://hdl.handle.net/20.500.12110/paper_10689613_v17_n_p93_Armentano |
work_keys_str_mv |
AT armentanomg asymptoticlowerboundsforeigenvaluesbynonconformingfiniteelementmethods AT duranrg asymptoticlowerboundsforeigenvaluesbynonconformingfiniteelementmethods |
_version_ |
1807314786375958528 |