Asymptotic lower bounds for eigenvalues by nonconforming finite element methods

We analyze the approximation obtained for the eigenvalues of the Laplace operator by the nonconforming piecewise linear finite element of Crouzeix-Raviart. For singular eigenfunctions, as those arising in nonconvex polygons, we prove that the eigenvalues obtained with this method give lower bounds o...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Armentano, M.G., Durán, R.G.
Formato: JOUR
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_10689613_v17_n_p93_Armentano
Aporte de:
id todo:paper_10689613_v17_n_p93_Armentano
record_format dspace
spelling todo:paper_10689613_v17_n_p93_Armentano2023-10-03T16:02:13Z Asymptotic lower bounds for eigenvalues by nonconforming finite element methods Armentano, M.G. Durán, R.G. Eigenvalue problems Finite elements Nonconforming methods We analyze the approximation obtained for the eigenvalues of the Laplace operator by the nonconforming piecewise linear finite element of Crouzeix-Raviart. For singular eigenfunctions, as those arising in nonconvex polygons, we prove that the eigenvalues obtained with this method give lower bounds of the exact eigenvalues when the mesh size is small enough. Fil:Armentano, M.G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Durán, R.G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_10689613_v17_n_p93_Armentano
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Eigenvalue problems
Finite elements
Nonconforming methods
spellingShingle Eigenvalue problems
Finite elements
Nonconforming methods
Armentano, M.G.
Durán, R.G.
Asymptotic lower bounds for eigenvalues by nonconforming finite element methods
topic_facet Eigenvalue problems
Finite elements
Nonconforming methods
description We analyze the approximation obtained for the eigenvalues of the Laplace operator by the nonconforming piecewise linear finite element of Crouzeix-Raviart. For singular eigenfunctions, as those arising in nonconvex polygons, we prove that the eigenvalues obtained with this method give lower bounds of the exact eigenvalues when the mesh size is small enough.
format JOUR
author Armentano, M.G.
Durán, R.G.
author_facet Armentano, M.G.
Durán, R.G.
author_sort Armentano, M.G.
title Asymptotic lower bounds for eigenvalues by nonconforming finite element methods
title_short Asymptotic lower bounds for eigenvalues by nonconforming finite element methods
title_full Asymptotic lower bounds for eigenvalues by nonconforming finite element methods
title_fullStr Asymptotic lower bounds for eigenvalues by nonconforming finite element methods
title_full_unstemmed Asymptotic lower bounds for eigenvalues by nonconforming finite element methods
title_sort asymptotic lower bounds for eigenvalues by nonconforming finite element methods
url http://hdl.handle.net/20.500.12110/paper_10689613_v17_n_p93_Armentano
work_keys_str_mv AT armentanomg asymptoticlowerboundsforeigenvaluesbynonconformingfiniteelementmethods
AT duranrg asymptoticlowerboundsforeigenvaluesbynonconformingfiniteelementmethods
_version_ 1807314786375958528