Microscopic model of a phononic refrigerator

We analyze a simple microscopic model to pump heat from a cold to a hot reservoir in a nanomechanical system. The model consists of a one-dimensional chain of masses and springs coupled to a back gate through which a time-dependent perturbation is applied. The action of the gate creates a moving pho...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Arrachea, L., Mucciolo, E.R., Chamon, C., Capaz, R.B.
Formato: JOUR
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_10980121_v86_n12_p_Arrachea
Aporte de:
id todo:paper_10980121_v86_n12_p_Arrachea
record_format dspace
spelling todo:paper_10980121_v86_n12_p_Arrachea2023-10-03T16:06:21Z Microscopic model of a phononic refrigerator Arrachea, L. Mucciolo, E.R. Chamon, C. Capaz, R.B. We analyze a simple microscopic model to pump heat from a cold to a hot reservoir in a nanomechanical system. The model consists of a one-dimensional chain of masses and springs coupled to a back gate through which a time-dependent perturbation is applied. The action of the gate creates a moving phononic barrier by locally pinning a mass. We solve the problem numerically using a nonequilibrium Green's function technique. For low driving frequencies and for sharp traveling barriers, we show that this microscopic model realizes a phonon refrigerator. © 2012 American Physical Society. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_10980121_v86_n12_p_Arrachea
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
description We analyze a simple microscopic model to pump heat from a cold to a hot reservoir in a nanomechanical system. The model consists of a one-dimensional chain of masses and springs coupled to a back gate through which a time-dependent perturbation is applied. The action of the gate creates a moving phononic barrier by locally pinning a mass. We solve the problem numerically using a nonequilibrium Green's function technique. For low driving frequencies and for sharp traveling barriers, we show that this microscopic model realizes a phonon refrigerator. © 2012 American Physical Society.
format JOUR
author Arrachea, L.
Mucciolo, E.R.
Chamon, C.
Capaz, R.B.
spellingShingle Arrachea, L.
Mucciolo, E.R.
Chamon, C.
Capaz, R.B.
Microscopic model of a phononic refrigerator
author_facet Arrachea, L.
Mucciolo, E.R.
Chamon, C.
Capaz, R.B.
author_sort Arrachea, L.
title Microscopic model of a phononic refrigerator
title_short Microscopic model of a phononic refrigerator
title_full Microscopic model of a phononic refrigerator
title_fullStr Microscopic model of a phononic refrigerator
title_full_unstemmed Microscopic model of a phononic refrigerator
title_sort microscopic model of a phononic refrigerator
url http://hdl.handle.net/20.500.12110/paper_10980121_v86_n12_p_Arrachea
work_keys_str_mv AT arracheal microscopicmodelofaphononicrefrigerator
AT muccioloer microscopicmodelofaphononicrefrigerator
AT chamonc microscopicmodelofaphononicrefrigerator
AT capazrb microscopicmodelofaphononicrefrigerator
_version_ 1807317072644931584