On existence of periodic solutions for kepler type problems

We prove existence and multiplicity of periodic motions for the forced 2-body problem under conditions of topological character. In different cases, the lower bounds obtained for the number of solutions are related to the winding number of a curve in the plane and the homology of a space in ℝ3. © 20...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Amster, P., Haddad, J.
Formato: JOUR
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_12303429_v48_n2_p465_Amster
Aporte de:
id todo:paper_12303429_v48_n2_p465_Amster
record_format dspace
spelling todo:paper_12303429_v48_n2_p465_Amster2023-10-03T16:09:10Z On existence of periodic solutions for kepler type problems Amster, P. Haddad, J. Averaging method Forced 2-body problem Multiplicity Periodic solutions Topological degree We prove existence and multiplicity of periodic motions for the forced 2-body problem under conditions of topological character. In different cases, the lower bounds obtained for the number of solutions are related to the winding number of a curve in the plane and the homology of a space in ℝ3. © 2016 Juliusz Schauder Centre for Nonlinear Studies. Fil:Amster, P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Haddad, J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_12303429_v48_n2_p465_Amster
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Averaging method
Forced 2-body problem
Multiplicity
Periodic solutions
Topological degree
spellingShingle Averaging method
Forced 2-body problem
Multiplicity
Periodic solutions
Topological degree
Amster, P.
Haddad, J.
On existence of periodic solutions for kepler type problems
topic_facet Averaging method
Forced 2-body problem
Multiplicity
Periodic solutions
Topological degree
description We prove existence and multiplicity of periodic motions for the forced 2-body problem under conditions of topological character. In different cases, the lower bounds obtained for the number of solutions are related to the winding number of a curve in the plane and the homology of a space in ℝ3. © 2016 Juliusz Schauder Centre for Nonlinear Studies.
format JOUR
author Amster, P.
Haddad, J.
author_facet Amster, P.
Haddad, J.
author_sort Amster, P.
title On existence of periodic solutions for kepler type problems
title_short On existence of periodic solutions for kepler type problems
title_full On existence of periodic solutions for kepler type problems
title_fullStr On existence of periodic solutions for kepler type problems
title_full_unstemmed On existence of periodic solutions for kepler type problems
title_sort on existence of periodic solutions for kepler type problems
url http://hdl.handle.net/20.500.12110/paper_12303429_v48_n2_p465_Amster
work_keys_str_mv AT amsterp onexistenceofperiodicsolutionsforkeplertypeproblems
AT haddadj onexistenceofperiodicsolutionsforkeplertypeproblems
_version_ 1807320601455493120