Convergence rates in a weighted Fučik problem
In this work we consider the Fučik problem for a family of weights depending on ε with Dirichlet and Neumann boundary conditions. We study the homogenization of the spectrum. We also deal with the special case of periodic homogenization and we obtain the rate of convergence of the first non-trivial...
Guardado en:
Autor principal: | |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_15361365_v14_n2_p427_Salort |
Aporte de: |
id |
todo:paper_15361365_v14_n2_p427_Salort |
---|---|
record_format |
dspace |
spelling |
todo:paper_15361365_v14_n2_p427_Salort2023-10-03T16:21:47Z Convergence rates in a weighted Fučik problem Salort, A.M. Eigenvalue homogenization Nonlinear eigenvalues Order of convergence In this work we consider the Fučik problem for a family of weights depending on ε with Dirichlet and Neumann boundary conditions. We study the homogenization of the spectrum. We also deal with the special case of periodic homogenization and we obtain the rate of convergence of the first non-trivial curve of the spectrum. Fil:Salort, A.M. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_15361365_v14_n2_p427_Salort |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
topic |
Eigenvalue homogenization Nonlinear eigenvalues Order of convergence |
spellingShingle |
Eigenvalue homogenization Nonlinear eigenvalues Order of convergence Salort, A.M. Convergence rates in a weighted Fučik problem |
topic_facet |
Eigenvalue homogenization Nonlinear eigenvalues Order of convergence |
description |
In this work we consider the Fučik problem for a family of weights depending on ε with Dirichlet and Neumann boundary conditions. We study the homogenization of the spectrum. We also deal with the special case of periodic homogenization and we obtain the rate of convergence of the first non-trivial curve of the spectrum. |
format |
JOUR |
author |
Salort, A.M. |
author_facet |
Salort, A.M. |
author_sort |
Salort, A.M. |
title |
Convergence rates in a weighted Fučik problem |
title_short |
Convergence rates in a weighted Fučik problem |
title_full |
Convergence rates in a weighted Fučik problem |
title_fullStr |
Convergence rates in a weighted Fučik problem |
title_full_unstemmed |
Convergence rates in a weighted Fučik problem |
title_sort |
convergence rates in a weighted fučik problem |
url |
http://hdl.handle.net/20.500.12110/paper_15361365_v14_n2_p427_Salort |
work_keys_str_mv |
AT salortam convergenceratesinaweightedfucikproblem |
_version_ |
1807323842883878912 |