Equations of p-laplacian type in unbounded domains
This work is devoted to study the existence of solutions to equations of the pLaplacian type in unbounded domains. We prove the existence of at least one solution, and under further assumptions, the existence of infinitely many solutions. We apply the mountain pass theorem in weighted Sobolev spaces...
Guardado en:
Autores principales: | , |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_15361365_v2_n3_p237_DeNapoli |
Aporte de: |
id |
todo:paper_15361365_v2_n3_p237_DeNapoli |
---|---|
record_format |
dspace |
spelling |
todo:paper_15361365_v2_n3_p237_DeNapoli2023-10-03T16:21:49Z Equations of p-laplacian type in unbounded domains De Nápoli, P.L. Cristina Mariani, M. Mountain pass lemma P-LapIacian Weighted sobolev spaces This work is devoted to study the existence of solutions to equations of the pLaplacian type in unbounded domains. We prove the existence of at least one solution, and under further assumptions, the existence of infinitely many solutions. We apply the mountain pass theorem in weighted Sobolev spaces. Fil:De Nápoli, P.L. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Cristina Mariani, M. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_15361365_v2_n3_p237_DeNapoli |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
topic |
Mountain pass lemma P-LapIacian Weighted sobolev spaces |
spellingShingle |
Mountain pass lemma P-LapIacian Weighted sobolev spaces De Nápoli, P.L. Cristina Mariani, M. Equations of p-laplacian type in unbounded domains |
topic_facet |
Mountain pass lemma P-LapIacian Weighted sobolev spaces |
description |
This work is devoted to study the existence of solutions to equations of the pLaplacian type in unbounded domains. We prove the existence of at least one solution, and under further assumptions, the existence of infinitely many solutions. We apply the mountain pass theorem in weighted Sobolev spaces. |
format |
JOUR |
author |
De Nápoli, P.L. Cristina Mariani, M. |
author_facet |
De Nápoli, P.L. Cristina Mariani, M. |
author_sort |
De Nápoli, P.L. |
title |
Equations of p-laplacian type in unbounded domains |
title_short |
Equations of p-laplacian type in unbounded domains |
title_full |
Equations of p-laplacian type in unbounded domains |
title_fullStr |
Equations of p-laplacian type in unbounded domains |
title_full_unstemmed |
Equations of p-laplacian type in unbounded domains |
title_sort |
equations of p-laplacian type in unbounded domains |
url |
http://hdl.handle.net/20.500.12110/paper_15361365_v2_n3_p237_DeNapoli |
work_keys_str_mv |
AT denapolipl equationsofplaplaciantypeinunboundeddomains AT cristinamarianim equationsofplaplaciantypeinunboundeddomains |
_version_ |
1807322302841356288 |