Hartree approximation in curved spacetimes revisited. II. the semiclassical Einstein equations and de Sitter self-consistent solutions
We consider the semiclassical Einstein equations (SEE) in the presence of a quantum scalar field with self-interaction λφ4. Working in the Hartree truncation of the two-particle irreducible effective action, we compute the vacuum expectation value of the energy-momentum tensor of the scalar field, w...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | JOUR |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_15507998_v89_n8_p_LopezNacir |
Aporte de: |
id |
todo:paper_15507998_v89_n8_p_LopezNacir |
---|---|
record_format |
dspace |
spelling |
todo:paper_15507998_v89_n8_p_LopezNacir2023-10-03T16:25:00Z Hartree approximation in curved spacetimes revisited. II. the semiclassical Einstein equations and de Sitter self-consistent solutions López Nacir, D.L. Mazzitelli, F.D. Trombetta, L.G. We consider the semiclassical Einstein equations (SEE) in the presence of a quantum scalar field with self-interaction λφ4. Working in the Hartree truncation of the two-particle irreducible effective action, we compute the vacuum expectation value of the energy-momentum tensor of the scalar field, which acts as a source of the SEE. We obtain the renormalized SEE by implementing a consistent renormalization procedure. We apply our results to find self-consistent de Sitter solutions to the SEE in situations with or without spontaneous breaking of the Z2-symmetry. © 2014 American Physical Society. Fil:López Nacir, D.L. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Mazzitelli, F.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_15507998_v89_n8_p_LopezNacir |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
description |
We consider the semiclassical Einstein equations (SEE) in the presence of a quantum scalar field with self-interaction λφ4. Working in the Hartree truncation of the two-particle irreducible effective action, we compute the vacuum expectation value of the energy-momentum tensor of the scalar field, which acts as a source of the SEE. We obtain the renormalized SEE by implementing a consistent renormalization procedure. We apply our results to find self-consistent de Sitter solutions to the SEE in situations with or without spontaneous breaking of the Z2-symmetry. © 2014 American Physical Society. |
format |
JOUR |
author |
López Nacir, D.L. Mazzitelli, F.D. Trombetta, L.G. |
spellingShingle |
López Nacir, D.L. Mazzitelli, F.D. Trombetta, L.G. Hartree approximation in curved spacetimes revisited. II. the semiclassical Einstein equations and de Sitter self-consistent solutions |
author_facet |
López Nacir, D.L. Mazzitelli, F.D. Trombetta, L.G. |
author_sort |
López Nacir, D.L. |
title |
Hartree approximation in curved spacetimes revisited. II. the semiclassical Einstein equations and de Sitter self-consistent solutions |
title_short |
Hartree approximation in curved spacetimes revisited. II. the semiclassical Einstein equations and de Sitter self-consistent solutions |
title_full |
Hartree approximation in curved spacetimes revisited. II. the semiclassical Einstein equations and de Sitter self-consistent solutions |
title_fullStr |
Hartree approximation in curved spacetimes revisited. II. the semiclassical Einstein equations and de Sitter self-consistent solutions |
title_full_unstemmed |
Hartree approximation in curved spacetimes revisited. II. the semiclassical Einstein equations and de Sitter self-consistent solutions |
title_sort |
hartree approximation in curved spacetimes revisited. ii. the semiclassical einstein equations and de sitter self-consistent solutions |
url |
http://hdl.handle.net/20.500.12110/paper_15507998_v89_n8_p_LopezNacir |
work_keys_str_mv |
AT lopeznacirdl hartreeapproximationincurvedspacetimesrevisitediithesemiclassicaleinsteinequationsanddesitterselfconsistentsolutions AT mazzitellifd hartreeapproximationincurvedspacetimesrevisitediithesemiclassicaleinsteinequationsanddesitterselfconsistentsolutions AT trombettalg hartreeapproximationincurvedspacetimesrevisitediithesemiclassicaleinsteinequationsanddesitterselfconsistentsolutions |
_version_ |
1807319392795492352 |