Hartree approximation in curved spacetimes revisited. II. the semiclassical Einstein equations and de Sitter self-consistent solutions

We consider the semiclassical Einstein equations (SEE) in the presence of a quantum scalar field with self-interaction λφ4. Working in the Hartree truncation of the two-particle irreducible effective action, we compute the vacuum expectation value of the energy-momentum tensor of the scalar field, w...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: López Nacir, D.L., Mazzitelli, F.D., Trombetta, L.G.
Formato: JOUR
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_15507998_v89_n8_p_LopezNacir
Aporte de:
id todo:paper_15507998_v89_n8_p_LopezNacir
record_format dspace
spelling todo:paper_15507998_v89_n8_p_LopezNacir2023-10-03T16:25:00Z Hartree approximation in curved spacetimes revisited. II. the semiclassical Einstein equations and de Sitter self-consistent solutions López Nacir, D.L. Mazzitelli, F.D. Trombetta, L.G. We consider the semiclassical Einstein equations (SEE) in the presence of a quantum scalar field with self-interaction λφ4. Working in the Hartree truncation of the two-particle irreducible effective action, we compute the vacuum expectation value of the energy-momentum tensor of the scalar field, which acts as a source of the SEE. We obtain the renormalized SEE by implementing a consistent renormalization procedure. We apply our results to find self-consistent de Sitter solutions to the SEE in situations with or without spontaneous breaking of the Z2-symmetry. © 2014 American Physical Society. Fil:López Nacir, D.L. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Mazzitelli, F.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_15507998_v89_n8_p_LopezNacir
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
description We consider the semiclassical Einstein equations (SEE) in the presence of a quantum scalar field with self-interaction λφ4. Working in the Hartree truncation of the two-particle irreducible effective action, we compute the vacuum expectation value of the energy-momentum tensor of the scalar field, which acts as a source of the SEE. We obtain the renormalized SEE by implementing a consistent renormalization procedure. We apply our results to find self-consistent de Sitter solutions to the SEE in situations with or without spontaneous breaking of the Z2-symmetry. © 2014 American Physical Society.
format JOUR
author López Nacir, D.L.
Mazzitelli, F.D.
Trombetta, L.G.
spellingShingle López Nacir, D.L.
Mazzitelli, F.D.
Trombetta, L.G.
Hartree approximation in curved spacetimes revisited. II. the semiclassical Einstein equations and de Sitter self-consistent solutions
author_facet López Nacir, D.L.
Mazzitelli, F.D.
Trombetta, L.G.
author_sort López Nacir, D.L.
title Hartree approximation in curved spacetimes revisited. II. the semiclassical Einstein equations and de Sitter self-consistent solutions
title_short Hartree approximation in curved spacetimes revisited. II. the semiclassical Einstein equations and de Sitter self-consistent solutions
title_full Hartree approximation in curved spacetimes revisited. II. the semiclassical Einstein equations and de Sitter self-consistent solutions
title_fullStr Hartree approximation in curved spacetimes revisited. II. the semiclassical Einstein equations and de Sitter self-consistent solutions
title_full_unstemmed Hartree approximation in curved spacetimes revisited. II. the semiclassical Einstein equations and de Sitter self-consistent solutions
title_sort hartree approximation in curved spacetimes revisited. ii. the semiclassical einstein equations and de sitter self-consistent solutions
url http://hdl.handle.net/20.500.12110/paper_15507998_v89_n8_p_LopezNacir
work_keys_str_mv AT lopeznacirdl hartreeapproximationincurvedspacetimesrevisitediithesemiclassicaleinsteinequationsanddesitterselfconsistentsolutions
AT mazzitellifd hartreeapproximationincurvedspacetimesrevisitediithesemiclassicaleinsteinequationsanddesitterselfconsistentsolutions
AT trombettalg hartreeapproximationincurvedspacetimesrevisitediithesemiclassicaleinsteinequationsanddesitterselfconsistentsolutions
_version_ 1807319392795492352