Non-resonant Fredholm alternative and anti-maximum principle for the fractional p-Laplacian

In this paper we extend two nowadays classical results to a nonlinear Dirichlet problem to equations involving the fractional p-Laplacian. The first result is an existence in a non-resonant range more specific between the first and second eigenvalue of the fractional p-Laplacian. The second result i...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Del Pezzo, L.M., Quaas, A.
Formato: JOUR
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_16617738_v19_n1_p939_DelPezzo
Aporte de:
id todo:paper_16617738_v19_n1_p939_DelPezzo
record_format dspace
spelling todo:paper_16617738_v19_n1_p939_DelPezzo2023-10-03T16:28:42Z Non-resonant Fredholm alternative and anti-maximum principle for the fractional p-Laplacian Del Pezzo, L.M. Quaas, A. anti-maximum principle existence results Fractional p-Laplacian non-resonant In this paper we extend two nowadays classical results to a nonlinear Dirichlet problem to equations involving the fractional p-Laplacian. The first result is an existence in a non-resonant range more specific between the first and second eigenvalue of the fractional p-Laplacian. The second result is the anti-maximum principle for the fractional p-Laplacian. © 2017, Springer International Publishing. Fil:Del Pezzo, L.M. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_16617738_v19_n1_p939_DelPezzo
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic anti-maximum principle
existence results
Fractional p-Laplacian
non-resonant
spellingShingle anti-maximum principle
existence results
Fractional p-Laplacian
non-resonant
Del Pezzo, L.M.
Quaas, A.
Non-resonant Fredholm alternative and anti-maximum principle for the fractional p-Laplacian
topic_facet anti-maximum principle
existence results
Fractional p-Laplacian
non-resonant
description In this paper we extend two nowadays classical results to a nonlinear Dirichlet problem to equations involving the fractional p-Laplacian. The first result is an existence in a non-resonant range more specific between the first and second eigenvalue of the fractional p-Laplacian. The second result is the anti-maximum principle for the fractional p-Laplacian. © 2017, Springer International Publishing.
format JOUR
author Del Pezzo, L.M.
Quaas, A.
author_facet Del Pezzo, L.M.
Quaas, A.
author_sort Del Pezzo, L.M.
title Non-resonant Fredholm alternative and anti-maximum principle for the fractional p-Laplacian
title_short Non-resonant Fredholm alternative and anti-maximum principle for the fractional p-Laplacian
title_full Non-resonant Fredholm alternative and anti-maximum principle for the fractional p-Laplacian
title_fullStr Non-resonant Fredholm alternative and anti-maximum principle for the fractional p-Laplacian
title_full_unstemmed Non-resonant Fredholm alternative and anti-maximum principle for the fractional p-Laplacian
title_sort non-resonant fredholm alternative and anti-maximum principle for the fractional p-laplacian
url http://hdl.handle.net/20.500.12110/paper_16617738_v19_n1_p939_DelPezzo
work_keys_str_mv AT delpezzolm nonresonantfredholmalternativeandantimaximumprincipleforthefractionalplaplacian
AT quaasa nonresonantfredholmalternativeandantimaximumprincipleforthefractionalplaplacian
_version_ 1807323607309746176