Non-resonant Fredholm alternative and anti-maximum principle for the fractional p-Laplacian
In this paper we extend two nowadays classical results to a nonlinear Dirichlet problem to equations involving the fractional p-Laplacian. The first result is an existence in a non-resonant range more specific between the first and second eigenvalue of the fractional p-Laplacian. The second result i...
Guardado en:
Autores principales: | , |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_16617738_v19_n1_p939_DelPezzo |
Aporte de: |
id |
todo:paper_16617738_v19_n1_p939_DelPezzo |
---|---|
record_format |
dspace |
spelling |
todo:paper_16617738_v19_n1_p939_DelPezzo2023-10-03T16:28:42Z Non-resonant Fredholm alternative and anti-maximum principle for the fractional p-Laplacian Del Pezzo, L.M. Quaas, A. anti-maximum principle existence results Fractional p-Laplacian non-resonant In this paper we extend two nowadays classical results to a nonlinear Dirichlet problem to equations involving the fractional p-Laplacian. The first result is an existence in a non-resonant range more specific between the first and second eigenvalue of the fractional p-Laplacian. The second result is the anti-maximum principle for the fractional p-Laplacian. © 2017, Springer International Publishing. Fil:Del Pezzo, L.M. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_16617738_v19_n1_p939_DelPezzo |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
topic |
anti-maximum principle existence results Fractional p-Laplacian non-resonant |
spellingShingle |
anti-maximum principle existence results Fractional p-Laplacian non-resonant Del Pezzo, L.M. Quaas, A. Non-resonant Fredholm alternative and anti-maximum principle for the fractional p-Laplacian |
topic_facet |
anti-maximum principle existence results Fractional p-Laplacian non-resonant |
description |
In this paper we extend two nowadays classical results to a nonlinear Dirichlet problem to equations involving the fractional p-Laplacian. The first result is an existence in a non-resonant range more specific between the first and second eigenvalue of the fractional p-Laplacian. The second result is the anti-maximum principle for the fractional p-Laplacian. © 2017, Springer International Publishing. |
format |
JOUR |
author |
Del Pezzo, L.M. Quaas, A. |
author_facet |
Del Pezzo, L.M. Quaas, A. |
author_sort |
Del Pezzo, L.M. |
title |
Non-resonant Fredholm alternative and anti-maximum principle for the fractional p-Laplacian |
title_short |
Non-resonant Fredholm alternative and anti-maximum principle for the fractional p-Laplacian |
title_full |
Non-resonant Fredholm alternative and anti-maximum principle for the fractional p-Laplacian |
title_fullStr |
Non-resonant Fredholm alternative and anti-maximum principle for the fractional p-Laplacian |
title_full_unstemmed |
Non-resonant Fredholm alternative and anti-maximum principle for the fractional p-Laplacian |
title_sort |
non-resonant fredholm alternative and anti-maximum principle for the fractional p-laplacian |
url |
http://hdl.handle.net/20.500.12110/paper_16617738_v19_n1_p939_DelPezzo |
work_keys_str_mv |
AT delpezzolm nonresonantfredholmalternativeandantimaximumprincipleforthefractionalplaplacian AT quaasa nonresonantfredholmalternativeandantimaximumprincipleforthefractionalplaplacian |
_version_ |
1807323607309746176 |