The K-theory of toric varieties in positive characteristic
We show that if X is a toric scheme over a regular ring containing a field of finite characteristic, then the direct limit of the K-groups of X taken over any infinite sequence of non-trivial dilations is homotopy invariant. This theorem was known in characteristic 0. The affine case of our result w...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | JOUR |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_17538416_v7_n1_p247_Cortinas |
Aporte de: |
id |
todo:paper_17538416_v7_n1_p247_Cortinas |
---|---|
record_format |
dspace |
spelling |
todo:paper_17538416_v7_n1_p247_Cortinas2023-10-03T16:32:31Z The K-theory of toric varieties in positive characteristic Cortiñas, G. Haesemeyer, C. Walker, M.E. Weibel, C. We show that if X is a toric scheme over a regular ring containing a field of finite characteristic, then the direct limit of the K-groups of X taken over any infinite sequence of non-trivial dilations is homotopy invariant. This theorem was known in characteristic 0. The affine case of our result was conjectured by Gubeladze. © 2013 London Mathematical Society. Fil:Cortiñas, G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_17538416_v7_n1_p247_Cortinas |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
description |
We show that if X is a toric scheme over a regular ring containing a field of finite characteristic, then the direct limit of the K-groups of X taken over any infinite sequence of non-trivial dilations is homotopy invariant. This theorem was known in characteristic 0. The affine case of our result was conjectured by Gubeladze. © 2013 London Mathematical Society. |
format |
JOUR |
author |
Cortiñas, G. Haesemeyer, C. Walker, M.E. Weibel, C. |
spellingShingle |
Cortiñas, G. Haesemeyer, C. Walker, M.E. Weibel, C. The K-theory of toric varieties in positive characteristic |
author_facet |
Cortiñas, G. Haesemeyer, C. Walker, M.E. Weibel, C. |
author_sort |
Cortiñas, G. |
title |
The K-theory of toric varieties in positive characteristic |
title_short |
The K-theory of toric varieties in positive characteristic |
title_full |
The K-theory of toric varieties in positive characteristic |
title_fullStr |
The K-theory of toric varieties in positive characteristic |
title_full_unstemmed |
The K-theory of toric varieties in positive characteristic |
title_sort |
k-theory of toric varieties in positive characteristic |
url |
http://hdl.handle.net/20.500.12110/paper_17538416_v7_n1_p247_Cortinas |
work_keys_str_mv |
AT cortinasg thektheoryoftoricvarietiesinpositivecharacteristic AT haesemeyerc thektheoryoftoricvarietiesinpositivecharacteristic AT walkerme thektheoryoftoricvarietiesinpositivecharacteristic AT weibelc thektheoryoftoricvarietiesinpositivecharacteristic AT cortinasg ktheoryoftoricvarietiesinpositivecharacteristic AT haesemeyerc ktheoryoftoricvarietiesinpositivecharacteristic AT walkerme ktheoryoftoricvarietiesinpositivecharacteristic AT weibelc ktheoryoftoricvarietiesinpositivecharacteristic |
_version_ |
1807320083160104960 |