The K-theory of toric varieties in positive characteristic

We show that if X is a toric scheme over a regular ring containing a field of finite characteristic, then the direct limit of the K-groups of X taken over any infinite sequence of non-trivial dilations is homotopy invariant. This theorem was known in characteristic 0. The affine case of our result w...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Cortiñas, G., Haesemeyer, C., Walker, M.E., Weibel, C.
Formato: JOUR
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_17538416_v7_n1_p247_Cortinas
Aporte de:
id todo:paper_17538416_v7_n1_p247_Cortinas
record_format dspace
spelling todo:paper_17538416_v7_n1_p247_Cortinas2023-10-03T16:32:31Z The K-theory of toric varieties in positive characteristic Cortiñas, G. Haesemeyer, C. Walker, M.E. Weibel, C. We show that if X is a toric scheme over a regular ring containing a field of finite characteristic, then the direct limit of the K-groups of X taken over any infinite sequence of non-trivial dilations is homotopy invariant. This theorem was known in characteristic 0. The affine case of our result was conjectured by Gubeladze. © 2013 London Mathematical Society. Fil:Cortiñas, G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_17538416_v7_n1_p247_Cortinas
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
description We show that if X is a toric scheme over a regular ring containing a field of finite characteristic, then the direct limit of the K-groups of X taken over any infinite sequence of non-trivial dilations is homotopy invariant. This theorem was known in characteristic 0. The affine case of our result was conjectured by Gubeladze. © 2013 London Mathematical Society.
format JOUR
author Cortiñas, G.
Haesemeyer, C.
Walker, M.E.
Weibel, C.
spellingShingle Cortiñas, G.
Haesemeyer, C.
Walker, M.E.
Weibel, C.
The K-theory of toric varieties in positive characteristic
author_facet Cortiñas, G.
Haesemeyer, C.
Walker, M.E.
Weibel, C.
author_sort Cortiñas, G.
title The K-theory of toric varieties in positive characteristic
title_short The K-theory of toric varieties in positive characteristic
title_full The K-theory of toric varieties in positive characteristic
title_fullStr The K-theory of toric varieties in positive characteristic
title_full_unstemmed The K-theory of toric varieties in positive characteristic
title_sort k-theory of toric varieties in positive characteristic
url http://hdl.handle.net/20.500.12110/paper_17538416_v7_n1_p247_Cortinas
work_keys_str_mv AT cortinasg thektheoryoftoricvarietiesinpositivecharacteristic
AT haesemeyerc thektheoryoftoricvarietiesinpositivecharacteristic
AT walkerme thektheoryoftoricvarietiesinpositivecharacteristic
AT weibelc thektheoryoftoricvarietiesinpositivecharacteristic
AT cortinasg ktheoryoftoricvarietiesinpositivecharacteristic
AT haesemeyerc ktheoryoftoricvarietiesinpositivecharacteristic
AT walkerme ktheoryoftoricvarietiesinpositivecharacteristic
AT weibelc ktheoryoftoricvarietiesinpositivecharacteristic
_version_ 1807320083160104960