An algebraic characterization of simple closed curves on surfaces with boundary
We prove that a conjugacy class in the fundamental group of a surface with boundary is represented by a power of a simple curve if and only if the Goldman bracket of two different powers of this class, one of them larger than two, is zero. The main theorem actually counts self-intersection number of...
Guardado en:
Autores principales: | , |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_17935253_v2_n3_p395_Chas |
Aporte de: |
Sumario: | We prove that a conjugacy class in the fundamental group of a surface with boundary is represented by a power of a simple curve if and only if the Goldman bracket of two different powers of this class, one of them larger than two, is zero. The main theorem actually counts self-intersection number of a primitive class by counting the number of terms of the Goldman bracket of two distinct powers, one of them larger than two. © 2010 World Scientific Publishing Company. |
---|