Optimal robust estimates using the Hellinger distance

Optimal robust M-estimates of a multidimensional parameter are described using Hampel's infinitesimal approach. The optimal estimates are derived by minimizing a measure of efficiency under the model, subject to a bounded measure of infinitesimal robustness. To this purpose we define measures o...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Marazzi, A., Yohai, V.J.
Formato: JOUR
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_18625347_v4_n2_p169_Marazzi
Aporte de:
id todo:paper_18625347_v4_n2_p169_Marazzi
record_format dspace
spelling todo:paper_18625347_v4_n2_p169_Marazzi2023-10-03T16:33:24Z Optimal robust estimates using the Hellinger distance Marazzi, A. Yohai, V.J. gross error sensitivity Hampel's infinitesimal approach negative binomial distribution High energy physics Data sets Gross errors Hampel's infinitesimal approach Hellinger distance Kullback Leibler divergence Multi-dimensional parameters Negative binomial distribution Robust estimate Optimization Optimal robust M-estimates of a multidimensional parameter are described using Hampel's infinitesimal approach. The optimal estimates are derived by minimizing a measure of efficiency under the model, subject to a bounded measure of infinitesimal robustness. To this purpose we define measures of efficiency and infinitesimal sensitivity based on the Hellinger distance. We show that these two measures coincide with similar ones defined by Yohai using the Kullback-Leibler divergence, and therefore the corresponding optimal estimates coincide too. We also give an example where we fit a negative binomial distribution to a real dataset of "days of stay in hospital" using the optimal robust estimates. © 2010 Springer-Verlag. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_18625347_v4_n2_p169_Marazzi
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic gross error sensitivity
Hampel's infinitesimal approach
negative binomial distribution
High energy physics
Data sets
Gross errors
Hampel's infinitesimal approach
Hellinger distance
Kullback Leibler divergence
Multi-dimensional parameters
Negative binomial distribution
Robust estimate
Optimization
spellingShingle gross error sensitivity
Hampel's infinitesimal approach
negative binomial distribution
High energy physics
Data sets
Gross errors
Hampel's infinitesimal approach
Hellinger distance
Kullback Leibler divergence
Multi-dimensional parameters
Negative binomial distribution
Robust estimate
Optimization
Marazzi, A.
Yohai, V.J.
Optimal robust estimates using the Hellinger distance
topic_facet gross error sensitivity
Hampel's infinitesimal approach
negative binomial distribution
High energy physics
Data sets
Gross errors
Hampel's infinitesimal approach
Hellinger distance
Kullback Leibler divergence
Multi-dimensional parameters
Negative binomial distribution
Robust estimate
Optimization
description Optimal robust M-estimates of a multidimensional parameter are described using Hampel's infinitesimal approach. The optimal estimates are derived by minimizing a measure of efficiency under the model, subject to a bounded measure of infinitesimal robustness. To this purpose we define measures of efficiency and infinitesimal sensitivity based on the Hellinger distance. We show that these two measures coincide with similar ones defined by Yohai using the Kullback-Leibler divergence, and therefore the corresponding optimal estimates coincide too. We also give an example where we fit a negative binomial distribution to a real dataset of "days of stay in hospital" using the optimal robust estimates. © 2010 Springer-Verlag.
format JOUR
author Marazzi, A.
Yohai, V.J.
author_facet Marazzi, A.
Yohai, V.J.
author_sort Marazzi, A.
title Optimal robust estimates using the Hellinger distance
title_short Optimal robust estimates using the Hellinger distance
title_full Optimal robust estimates using the Hellinger distance
title_fullStr Optimal robust estimates using the Hellinger distance
title_full_unstemmed Optimal robust estimates using the Hellinger distance
title_sort optimal robust estimates using the hellinger distance
url http://hdl.handle.net/20.500.12110/paper_18625347_v4_n2_p169_Marazzi
work_keys_str_mv AT marazzia optimalrobustestimatesusingthehellingerdistance
AT yohaivj optimalrobustestimatesusingthehellingerdistance
_version_ 1807322780073459712