A Bayesian methodology for soil parameters retrieval from SAR images

Soil moisture retrieval from SAR data presents two main sources of uncertainty: terrain heterogeneity and speckle noise. In this paper, these issues will be addressed by using a Bayesian approach. Such a Bayesian approach (1) needs only a forward model (no retrieval model required), (2) gives the op...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Barber, M., Perna, P., Bruscantinni, C., Grings, F., Karszenbaum, H., Piscitelli, M., Jacobo-Berlles, J.
Formato: CONF
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_97814577_v_n_p1215_Barber
Aporte de:
id todo:paper_97814577_v_n_p1215_Barber
record_format dspace
spelling todo:paper_97814577_v_n_p1215_Barber2023-10-03T16:43:23Z A Bayesian methodology for soil parameters retrieval from SAR images Barber, M. Perna, P. Bruscantinni, C. Grings, F. Karszenbaum, H. Piscitelli, M. Jacobo-Berlles, J. Bayesian retrieval approaches radar remote sensing Soil moisture Bayesian approaches Bayesian methodology Bayesian retrieval Error sources Forward models Radar remote sensing Retrieval models Retrieval procedures SAR data SAR Images Soil moisture retrievals Soil parameters Sources of uncertainty Speckle noise Unbiased estimator Bayesian networks Moisture determination Remote sensing Soil moisture Space optics Synthetic aperture radar Geologic models Soil moisture retrieval from SAR data presents two main sources of uncertainty: terrain heterogeneity and speckle noise. In this paper, these issues will be addressed by using a Bayesian approach. Such a Bayesian approach (1) needs only a forward model (no retrieval model required), (2) gives the optimal unbiased estimator for the soil moisture and its error and (3) can include as many error sources as required. Through numerical simulations, a standard Oh retrieval procedure and the Bayesian approach were tested for different number of looks (n = 3 and n = 64). The results indicate that for a large number of looks the region of validity of both approaches are similar. Furthermore, contrary to the Oh model retrieval procedure which is only valid in a bounded region of the (hh, vv, hv)-space, the Bayesian approach gives an estimation of soil moisture and its error for any combination of hh, vv and hv, so enlarging the region where the retrieval is possible. © 2011 IEEE. Fil:Barber, M. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Perna, P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Grings, F. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Karszenbaum, H. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Jacobo-Berlles, J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. CONF info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_97814577_v_n_p1215_Barber
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Bayesian retrieval approaches
radar remote sensing
Soil moisture
Bayesian approaches
Bayesian methodology
Bayesian retrieval
Error sources
Forward models
Radar remote sensing
Retrieval models
Retrieval procedures
SAR data
SAR Images
Soil moisture retrievals
Soil parameters
Sources of uncertainty
Speckle noise
Unbiased estimator
Bayesian networks
Moisture determination
Remote sensing
Soil moisture
Space optics
Synthetic aperture radar
Geologic models
spellingShingle Bayesian retrieval approaches
radar remote sensing
Soil moisture
Bayesian approaches
Bayesian methodology
Bayesian retrieval
Error sources
Forward models
Radar remote sensing
Retrieval models
Retrieval procedures
SAR data
SAR Images
Soil moisture retrievals
Soil parameters
Sources of uncertainty
Speckle noise
Unbiased estimator
Bayesian networks
Moisture determination
Remote sensing
Soil moisture
Space optics
Synthetic aperture radar
Geologic models
Barber, M.
Perna, P.
Bruscantinni, C.
Grings, F.
Karszenbaum, H.
Piscitelli, M.
Jacobo-Berlles, J.
A Bayesian methodology for soil parameters retrieval from SAR images
topic_facet Bayesian retrieval approaches
radar remote sensing
Soil moisture
Bayesian approaches
Bayesian methodology
Bayesian retrieval
Error sources
Forward models
Radar remote sensing
Retrieval models
Retrieval procedures
SAR data
SAR Images
Soil moisture retrievals
Soil parameters
Sources of uncertainty
Speckle noise
Unbiased estimator
Bayesian networks
Moisture determination
Remote sensing
Soil moisture
Space optics
Synthetic aperture radar
Geologic models
description Soil moisture retrieval from SAR data presents two main sources of uncertainty: terrain heterogeneity and speckle noise. In this paper, these issues will be addressed by using a Bayesian approach. Such a Bayesian approach (1) needs only a forward model (no retrieval model required), (2) gives the optimal unbiased estimator for the soil moisture and its error and (3) can include as many error sources as required. Through numerical simulations, a standard Oh retrieval procedure and the Bayesian approach were tested for different number of looks (n = 3 and n = 64). The results indicate that for a large number of looks the region of validity of both approaches are similar. Furthermore, contrary to the Oh model retrieval procedure which is only valid in a bounded region of the (hh, vv, hv)-space, the Bayesian approach gives an estimation of soil moisture and its error for any combination of hh, vv and hv, so enlarging the region where the retrieval is possible. © 2011 IEEE.
format CONF
author Barber, M.
Perna, P.
Bruscantinni, C.
Grings, F.
Karszenbaum, H.
Piscitelli, M.
Jacobo-Berlles, J.
author_facet Barber, M.
Perna, P.
Bruscantinni, C.
Grings, F.
Karszenbaum, H.
Piscitelli, M.
Jacobo-Berlles, J.
author_sort Barber, M.
title A Bayesian methodology for soil parameters retrieval from SAR images
title_short A Bayesian methodology for soil parameters retrieval from SAR images
title_full A Bayesian methodology for soil parameters retrieval from SAR images
title_fullStr A Bayesian methodology for soil parameters retrieval from SAR images
title_full_unstemmed A Bayesian methodology for soil parameters retrieval from SAR images
title_sort bayesian methodology for soil parameters retrieval from sar images
url http://hdl.handle.net/20.500.12110/paper_97814577_v_n_p1215_Barber
work_keys_str_mv AT barberm abayesianmethodologyforsoilparametersretrievalfromsarimages
AT pernap abayesianmethodologyforsoilparametersretrievalfromsarimages
AT bruscantinnic abayesianmethodologyforsoilparametersretrievalfromsarimages
AT gringsf abayesianmethodologyforsoilparametersretrievalfromsarimages
AT karszenbaumh abayesianmethodologyforsoilparametersretrievalfromsarimages
AT piscitellim abayesianmethodologyforsoilparametersretrievalfromsarimages
AT jacoboberllesj abayesianmethodologyforsoilparametersretrievalfromsarimages
AT barberm bayesianmethodologyforsoilparametersretrievalfromsarimages
AT pernap bayesianmethodologyforsoilparametersretrievalfromsarimages
AT bruscantinnic bayesianmethodologyforsoilparametersretrievalfromsarimages
AT gringsf bayesianmethodologyforsoilparametersretrievalfromsarimages
AT karszenbaumh bayesianmethodologyforsoilparametersretrievalfromsarimages
AT piscitellim bayesianmethodologyforsoilparametersretrievalfromsarimages
AT jacoboberllesj bayesianmethodologyforsoilparametersretrievalfromsarimages
_version_ 1807321059122216960