The k-theory of toric schemes over regular rings of mixed characteristic

We show that if X is a toric scheme over a regular commutative ring k then the direct limit of the K-groups of X taken over any infinite sequence of nontrivial dilations is homotopy invariant. This theorem was previously known for regular commutative rings containing a field. The affine case of our...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Cortiñas, G., Haesemeyer, C., Walker, M.E., Weibel, C.A.
Formato: CHAP
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_97833199_v_n_p455_Cortinas
Aporte de:
id todo:paper_97833199_v_n_p455_Cortinas
record_format dspace
spelling todo:paper_97833199_v_n_p455_Cortinas2023-10-03T16:45:05Z The k-theory of toric schemes over regular rings of mixed characteristic Cortiñas, G. Haesemeyer, C. Walker, M.E. Weibel, C.A. We show that if X is a toric scheme over a regular commutative ring k then the direct limit of the K-groups of X taken over any infinite sequence of nontrivial dilations is homotopy invariant. This theorem was previously known for regular commutative rings containing a field. The affine case of our result was conjectured by Gubeladze. We prove analogous results when k is replaced by an appropriate K-regular, not necessarily commutative k-algebra. © Springer Nature Switzerland AG 2018. All Rights Reserved. CHAP info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_97833199_v_n_p455_Cortinas
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
description We show that if X is a toric scheme over a regular commutative ring k then the direct limit of the K-groups of X taken over any infinite sequence of nontrivial dilations is homotopy invariant. This theorem was previously known for regular commutative rings containing a field. The affine case of our result was conjectured by Gubeladze. We prove analogous results when k is replaced by an appropriate K-regular, not necessarily commutative k-algebra. © Springer Nature Switzerland AG 2018. All Rights Reserved.
format CHAP
author Cortiñas, G.
Haesemeyer, C.
Walker, M.E.
Weibel, C.A.
spellingShingle Cortiñas, G.
Haesemeyer, C.
Walker, M.E.
Weibel, C.A.
The k-theory of toric schemes over regular rings of mixed characteristic
author_facet Cortiñas, G.
Haesemeyer, C.
Walker, M.E.
Weibel, C.A.
author_sort Cortiñas, G.
title The k-theory of toric schemes over regular rings of mixed characteristic
title_short The k-theory of toric schemes over regular rings of mixed characteristic
title_full The k-theory of toric schemes over regular rings of mixed characteristic
title_fullStr The k-theory of toric schemes over regular rings of mixed characteristic
title_full_unstemmed The k-theory of toric schemes over regular rings of mixed characteristic
title_sort k-theory of toric schemes over regular rings of mixed characteristic
url http://hdl.handle.net/20.500.12110/paper_97833199_v_n_p455_Cortinas
work_keys_str_mv AT cortinasg thektheoryoftoricschemesoverregularringsofmixedcharacteristic
AT haesemeyerc thektheoryoftoricschemesoverregularringsofmixedcharacteristic
AT walkerme thektheoryoftoricschemesoverregularringsofmixedcharacteristic
AT weibelca thektheoryoftoricschemesoverregularringsofmixedcharacteristic
AT cortinasg ktheoryoftoricschemesoverregularringsofmixedcharacteristic
AT haesemeyerc ktheoryoftoricschemesoverregularringsofmixedcharacteristic
AT walkerme ktheoryoftoricschemesoverregularringsofmixedcharacteristic
AT weibelca ktheoryoftoricschemesoverregularringsofmixedcharacteristic
_version_ 1807323611059453952