The k-theory of toric schemes over regular rings of mixed characteristic
We show that if X is a toric scheme over a regular commutative ring k then the direct limit of the K-groups of X taken over any infinite sequence of nontrivial dilations is homotopy invariant. This theorem was previously known for regular commutative rings containing a field. The affine case of our...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | CHAP |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_97833199_v_n_p455_Cortinas |
Aporte de: |
id |
todo:paper_97833199_v_n_p455_Cortinas |
---|---|
record_format |
dspace |
spelling |
todo:paper_97833199_v_n_p455_Cortinas2023-10-03T16:45:05Z The k-theory of toric schemes over regular rings of mixed characteristic Cortiñas, G. Haesemeyer, C. Walker, M.E. Weibel, C.A. We show that if X is a toric scheme over a regular commutative ring k then the direct limit of the K-groups of X taken over any infinite sequence of nontrivial dilations is homotopy invariant. This theorem was previously known for regular commutative rings containing a field. The affine case of our result was conjectured by Gubeladze. We prove analogous results when k is replaced by an appropriate K-regular, not necessarily commutative k-algebra. © Springer Nature Switzerland AG 2018. All Rights Reserved. CHAP info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_97833199_v_n_p455_Cortinas |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
description |
We show that if X is a toric scheme over a regular commutative ring k then the direct limit of the K-groups of X taken over any infinite sequence of nontrivial dilations is homotopy invariant. This theorem was previously known for regular commutative rings containing a field. The affine case of our result was conjectured by Gubeladze. We prove analogous results when k is replaced by an appropriate K-regular, not necessarily commutative k-algebra. © Springer Nature Switzerland AG 2018. All Rights Reserved. |
format |
CHAP |
author |
Cortiñas, G. Haesemeyer, C. Walker, M.E. Weibel, C.A. |
spellingShingle |
Cortiñas, G. Haesemeyer, C. Walker, M.E. Weibel, C.A. The k-theory of toric schemes over regular rings of mixed characteristic |
author_facet |
Cortiñas, G. Haesemeyer, C. Walker, M.E. Weibel, C.A. |
author_sort |
Cortiñas, G. |
title |
The k-theory of toric schemes over regular rings of mixed characteristic |
title_short |
The k-theory of toric schemes over regular rings of mixed characteristic |
title_full |
The k-theory of toric schemes over regular rings of mixed characteristic |
title_fullStr |
The k-theory of toric schemes over regular rings of mixed characteristic |
title_full_unstemmed |
The k-theory of toric schemes over regular rings of mixed characteristic |
title_sort |
k-theory of toric schemes over regular rings of mixed characteristic |
url |
http://hdl.handle.net/20.500.12110/paper_97833199_v_n_p455_Cortinas |
work_keys_str_mv |
AT cortinasg thektheoryoftoricschemesoverregularringsofmixedcharacteristic AT haesemeyerc thektheoryoftoricschemesoverregularringsofmixedcharacteristic AT walkerme thektheoryoftoricschemesoverregularringsofmixedcharacteristic AT weibelca thektheoryoftoricschemesoverregularringsofmixedcharacteristic AT cortinasg ktheoryoftoricschemesoverregularringsofmixedcharacteristic AT haesemeyerc ktheoryoftoricschemesoverregularringsofmixedcharacteristic AT walkerme ktheoryoftoricschemesoverregularringsofmixedcharacteristic AT weibelca ktheoryoftoricschemesoverregularringsofmixedcharacteristic |
_version_ |
1807323611059453952 |