A Study on Structure (Micro, Ultra, Nano), Mechanical, and Color Changes of Solanum lycopersicum L. (Cherry Tomato) Fruits Induced by Hydrogen Peroxide and Ultrasound

Changes in the epidermis structure (micro, ultra, and nano), mechanical properties, and surface color of Solanum licopersicum L. fruits (cherry tomatoes) due to hydrogen peroxide (HP) and high-power ultrasound (US) treatments were examined. Both treatments induced small alterations in the epicuticul...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Fava, J.
Otros Autores: Nieto, A., Hodara, K., Alzamora, S.M, Castro, M.A
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Springer New York LLC 2017
Materias:
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 15941caa a22013217a 4500
001 PAPER-14884
003 AR-BaUEN
005 20230518204529.0
008 190410s2017 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-85016412284 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Fava, J. 
245 1 2 |a A Study on Structure (Micro, Ultra, Nano), Mechanical, and Color Changes of Solanum lycopersicum L. (Cherry Tomato) Fruits Induced by Hydrogen Peroxide and Ultrasound 
260 |b Springer New York LLC  |c 2017 
270 1 0 |m Alzamora, S.M.; Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina, Godoy Cruz 2290, Argentina; email: smalzamora@gmail.com 
506 |2 openaire  |e Política editorial 
504 |a Aguilera, J.M., Stanley, D.W., (1999) Microstructural principles of food processing and engineering. 2nd Ed (chapter 6), , An Aspen Publication, Gaithersburg 
504 |a Allende, A., Tomás-Barberán, F.A., Gil, M.I., Minimal processing for healthy traditional foods (2006) Trends in Food Science and Technology, 17, pp. 513-519. , COI: 1:CAS:528:DC%2BD28Xmslyqtbg%3D 
504 |a Alzamora, S.M., Castro, M.A., Nieto, A.B., Vidales, S.L., Salvatori, D.M., The role of tissue microstructure in the textural characteristics of minimally processed fruits (2000) Minimally processed fruits and vegetables, pp. 153-171. , Alzamora SM, Tapia MS, López-Malo A, (eds), Aspen Publishers Inc., Gaithersburg 
504 |a Alzamora, S.M., Viollaz, P.E., Martínez, V.Y., Nieto, A.B., Salvatori, D.M., Exploring the linear viscoelastic properties structure relationship in processed fruit tissues (2008) Food engineering: integrated approaches, pp. 133-214. , Gutiérrez-López GE, Barbosa-Cánovas GV, Welti-Chanes J, Parada-Arias E, (eds), Springer, New York 
504 |a Baker, E.A., Chemistry and morphology of plant epicuticular waxes. In D. F. Cutler, K. L. Alvin, & C. E. Price (Eds.), The plant cuticle, Vol. 10 (pp. 139–165) (1982) Linnean Society Symposium Series, , London: Academic Press 
504 |a Balasundram, N., Sundram, K., Samman, S., Phenolic compounds in plants and agro-industrial by-products: antioxidant activity, occurrence, and potential uses (2006) Food Chemistry, 99, pp. 191-203. , COI: 1:CAS:528:DC%2BD28XjslygsLc%3D 
504 |a Bargel, H., Neinhuis, C., Tomato (Lycopersicon esculentum Mill.) fruit growth and ripening as related to the biomechanical properties of fruit skin and isolated cuticle (2005) Journal of Experimental Botany, 56, pp. 1049-1060. , COI: 1:CAS:528:DC%2BD2MXit1Knu7o%3D 
504 |a Carpita, N.C., Gibeaut, D.M., Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth (1993) Plant Journal, 3, pp. 1-30. , COI: 1:CAS:528:DyaK3sXitV2gtLk%3D 
504 |a Chaib, J., Devaux, M.F., Grotte, M.G., Robini, K., Causse, M., Lahaye, M., Physiological relationship among physical, sensory, and morphological attributes of texture in tomato fruits (2007) Journal of Experimental Botany, 8, pp. 1915-1925 
504 |a Cosgrove, D.J., Wall structure and wall loosening. A look backwards and forwards (2001) Plant Physiology, 125, pp. 131-134. , COI: 1:CAS:528:DC%2BD3MXjslymtbc%3D 
504 |a Cotner, S.D., Burns, E.E., Leeper, P.W., Pericarp anatomy of crack-resistant and susceptible tomato fruits (1969) Journal of American Society of Horticultural Science, 94, pp. 136-137 
504 |a Desmet, M., Lammertyn, J., Scheerlinck, N., Verlinden, B.E., Nicolai, B.M., Determination of puncture injury susceptibility of tomatoes (2003) Postharvest Biology and Technology, 27, pp. 293-303 
504 |a Domínguez, D., Cuartero, J., Heredia, A., An overview on plant cuticle biomechanics (2011) Plant Science, 181, pp. 77-84 
504 |a Esau, K., (1977) Anatomy of seed plants, , Wiley, New York 
504 |a Fava, J., Hodara, K., Nieto, A.B., Guerrero, S.N., Alzamora, S.M., Castro, M.A., Structure (micro, ultra, nano), colour and mechanical properties of Vitis labrusca L. (grape berry) fruits treated by hydrogen peroxide, UV-C irradiation and ultrasound (2011) Food Research International, 44, pp. 2938-2948. , COI: 1:CAS:528:DC%2BC3MXht1Oiu7zP 
504 |a George, B., Kaur, C., Khurdiya, D.S., Kapoor, H.C., Antioxidants in tomato (Lycopersium esculentum) as a function of genotype (2004) Food Chemistry, 84, pp. 45-51. , COI: 1:CAS:528:DC%2BD3sXot1Srsrw%3D 
504 |a Guerrero, S.N., López-Malo, A., Alzamora, S.M., Effect of ultrasound on the survival of Saccharomyces cerevisiae. Influence of temperature, pH and amplitude (2001) Innovative Food Science and Emerging Technologies, 2, pp. 31-39 
504 |a Holloway, P.J., The chemical constitution of plant cutins. In D. F. Cutler, K. L. Alvin, & C. E. Price (Eds.), The plant cuticle, Vol. 10 (pp. 45–85) (1982) Linnean Society Symposium Series, , London: Academic Press 
504 |a Jackman, R.L., Stanley, D.W., Influence of the skin on puncture properties of chilled and nonchilled tomato fruit (1994) Journal of Texture Studies, 25, pp. 221-230 
504 |a Jackman, R., Stanley, D., Perspectives in the textural evaluation of plant foods (1995) Trends in Food Science and Technology, 6, pp. 187-194. , COI: 1:CAS:528:DyaK2MXmslOjsbs%3D 
504 |a Jeffree, C.E., Baker, E.A., Holloway, P.J., Origins of the fine structure of plant epicuticular waxes (1976) Microbiology of aerial plant surface, pp. 119-158. , Dickinson CH, Preece TF, (eds), Academic Press, London 
504 |a Juven, B.J., Pierson, M.D., Antibacterial effects of hydrogen peroxide and methods for its detection and quantitation (1996) Journal of Food Protection, 59, pp. 1233-1241. , COI: 1:CAS:528:DyaK2sXivFegsg%3D%3D 
504 |a Kabas, O., Ozmerzi, A., Determining the mechanical properties of cherry tomato varieties for handling (2008) Journal of Texture Studies, 39, pp. 199-209 
504 |a Lara, I., Belge, B., Goulao, L.F., The fruit cuticle as a modulator of postharvest quality (2014) Postharvest Biology and Technology, 87, pp. 103-112. , COI: 1:CAS:528:DC%2BC3sXhslaitLfJ 
504 |a López-Malo, A., Guerrero, S., Alzamora, S.M., Saccharomyces cerevisiae thermal inactivation kinetics combined with ultrasound (1999) Journal of Food Protection, 62, pp. 1215-1217 
504 |a Martínez-Valverde, I., Periago, M.J., Provan, G., Chesson, A., Phenolic compounds, lycopene and antioxidant activity in commercial varieties of tomato (Lycopersicon esculentum) (2002) Journal of the Science of Food and Agriculture, 82, pp. 323-330 
504 |a Mason, T.J., (1990) Sonochemistry: the uses of ultrasound in chemistry, , Royal Society of Chemistry, Cambridge 
504 |a Matas, A.J., Cobb, E.D., Bartsch, J.A., Paolillo, D.J., Niklas, K.J., Biomechanics and anatomy of Lycopersicum esculentum fruit peels and enzyme-treated samples (2004) American Journal of Botany, 91, pp. 352-360 
504 |a Maury, C., Madieta, E., Le Moigne, M., Mehinagic, E., Siret, R., Jourjon, F., Development of a mechanical texture test to evaluate the ripening process of cabernet franc grapes (2009) Journal of Texture Studies, 40, pp. 511-535 
504 |a McGarigal, K., Cushman, S., Stafford, S., (2000) Multivariate statistics for wildlife and ecology research, , Springer-Verlag, New York 
504 |a Miller, R.A., Oxidation of cell wall polysaccharides by hydrogen peroxide: a potential mechanism for cell wall breakdown in plants (1986) Biochemical and Biophysical Research Communications, 141, pp. 238-244. , COI: 1:CAS:528:DyaL2sXkslenug%3D%3D 
504 |a Pagliarini, E., Monteleone, E., Ratti, S., Sensory profile of eight tomato cultivars (Lycopersicon esculentum) and its relationship to consumer preference (2001) Italian Journal of Food Science, 13, pp. 285-296 
504 |a Petracek, P.D., Bukovac, M.J., Rheological properties of enzymatically isolated tomato fruit cuticle (1995) Plant Physiology, 109, pp. 675-679. , COI: 1:CAS:528:DyaK2MXoslOqtLs%3D 
504 |a Pinelo, M., Arnous, A., Meyer, A.S., Upgrading of grape skins: significance of plant cell-wall structural components and extraction techniques for phenol release (2006) Trends in Food Science and Technology, 17, pp. 579-590. , COI: 1:CAS:528:DC%2BD28XhtVCrtLjN 
504 |a Quinn, G.P., Keough, M.J., (2002) Experimental design and data analysis for biologists, , Cambridge University Press, New York 
504 |a Raffellini, S., Schenk, M., Guerrero, S.N., Alzamora, S.M., Kinetics of Escherichia coli inactivation employing hydrogen peroxide at varying temperatures, pH and concentrations (2011) Food Control, 22, pp. 920-932. , COI: 1:CAS:528:DC%2BC3MXhtlSqtL8%3D 
504 |a Rao, A.V., Agarwal, S., Role of antioxidant lycopene in cancer and heart disease (2000) Journal of the American College of Nutrition, 19, pp. 563-569. , COI: 1:CAS:528:DC%2BD3cXnsVKqsLk%3D 
504 |a Reynolds, E.S., The use of lead citrate at high pH as an electron opaque stain in electron microscopy (1963) Journal of Cell Biology, 17, pp. 208-212. , COI: 1:CAS:528:DyaF3sXktVClu70%3D 
504 |a Sao José, J.F.B., Vanetti, M.C.D., Effect of ultrasound and commercial sanitizers in removing natural contaminants and Salmonella enterica Typhimurium on cherry tomatoes (2012) Food Control, 24, pp. 95-99 
504 |a Sharoni, Y., Levi, Y., Cancer prevention by dietary tomato lycopene and its molecular mechanisms (2006) Tomatoes, lycopene & human health, pp. 111-125. , Rao AV, (ed), Caledonian Science Press Ltd., Barcelona 
504 |a Sila, D.N., Duvetter, T., De Roeck, A., Verlent, I., Smout, C., Moates, G.K., Texture changes of processed fruits and vegetables: potential use of high-pressure processing (2008) Trends in Food Science and Technology, 19, pp. 309-319. , COI: 1:CAS:528:DC%2BD1cXms1Wjtrs%3D 
504 |a Sirisomboon, P., Tanaka, M., Akinaga, T., Kojima, T., Evaluation of the texture properties of Japanese pear (2000) Journal of Texture Studies, 31, pp. 665-677 
504 |a Spurr, A.R., Low-viscosity epoxy resin embedding medium for electron microscopy (1969) Journal of Ultrastructure Research, 26, pp. 31-43. , COI: 1:CAS:528:DyaF1MXkvVahsLc%3D 
504 |a Thompson, R.L., Fleming, H.P., Hamann, D.D., Delineation of puncture forces for exocarp and mesocarp tissues in cucumber fruit (1992) Journal of Texture Studies, 23, pp. 169-184 
504 |a Waldron, K.W., Parker, M.L., Smith, A.C., Plant cell walls and food quality (2003) Comprehensive Reviews in Food Science and Food Safety, 4, pp. 101-119 
504 |a Wang, W., Ma, X., Zou, M., Jiang, P., Hu, W., Li, J., Effects of ultrasound on spoilage microorganisms, quality, and antioxidant capacity of postharvest cherry tomatoes (2015) Journal of Food Science, 80, pp. C2117-C2126. , COI: 1:CAS:528:DC%2BC2MXhsFSksrrN 
504 |a Wattendorff, J., Holloway, P.J., Studies on the ultrastructure and histochemistry of plant cuticles: the cuticular membrane of Agave americana L. in situ (1980) Annals of Botany, 46, pp. 13-28. , COI: 1:CAS:528:DyaL3MXislemsw%3D%3D 
504 |a Wilcox, J.K., Catignani, G.L., Lazarus, S., Tomatoes and cardiovascular health (2003) Critical Reviews in Food Science and Nutrition, 43, pp. 1-18 
520 3 |a Changes in the epidermis structure (micro, ultra, and nano), mechanical properties, and surface color of Solanum licopersicum L. fruits (cherry tomatoes) due to hydrogen peroxide (HP) and high-power ultrasound (US) treatments were examined. Both treatments induced small alterations in the epicuticular waxes, the cuticular membrane, and the epidermal and subepidermal cells. Plasmolysis of subepidermal cells, slight epicarp compression, and dense cellulose microfibrils pattern in the non cutinized cellulose layer were documented after US. Looser cellulose microfibrils pattern in the cutinized and non cutinized cellulose layer was detected after HP exposure. Main nanostructure alterations in the cellulose domain affected the morphology and size of cellulose aggregates and nanofractures of cellulose layer in treated fruits. US treatment decreased a*, b*, and chroma values by 10, 5, and 7% and increased L* and hue angle by 2.5 and 3%, respectively, as compared to raw fruits. These small but significant differences were attributed to the disruption of the wax layer; color became brighter, more vivid, and more orange. Treatments slightly affected puncture parameters; the rupture force decreased from 14.8 N to 14.1 N and 13.8 N; the penetration probe at the rupture point increased from 7.6 mm to 7.7 mm and 8.0 mm and the mechanical work decreased from 48.7 mJ to 48.3 mJ and 44.4 mJ in raw fruits and after HP and US exposure, respectively. The mechanical response could be partially explained by the alterations in the micro, ultra, and nanostructure of the tissues. The low impact of US and HP treatments on mechanical and color characteristics would indicate their potential for cherry tomatoes decontamination. © 2017, Springer Science+Business Media New York.  |l eng 
593 |a Grupo de trabajo sobre Conservación de la Biodiversidad, Subsecretaría de Planificación y Política Ambiental, Secretaría de Ambiente y Desarrollo Sustentable, San Martín 4511004, Argentina 
593 |a Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria1428, Argentina 
593 |a Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina, Godoy Cruz 22901425, Argentina 
593 |a Departamento de Métodos Cuantitativos y Sistemas de Información, Facultad de Agronomía, Universidad de Buenos Aires, Av. San Martín 44531417, Argentina 
593 |a Anatomía Vegetal Aplicada, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria1428, Argentina 
690 1 0 |a CHERRY TOMATOES 
690 1 0 |a EPIDERMIS STRUCTURE 
690 1 0 |a HYDROGEN PEROXIDE 
690 1 0 |a MECHANICAL PROPERTIES 
690 1 0 |a ULTRASOUND 
690 1 0 |a BIOMECHANICS 
690 1 0 |a CELLULOSE 
690 1 0 |a CELLULOSE DERIVATIVES 
690 1 0 |a HYDROGEN PEROXIDE 
690 1 0 |a MECHANICAL PROPERTIES 
690 1 0 |a NANOSTRUCTURES 
690 1 0 |a OXIDATION 
690 1 0 |a PEROXIDES 
690 1 0 |a ULTRASONICS 
690 1 0 |a CELLULOSE MICROFIBRILS 
690 1 0 |a CHERRY TOMATOES 
690 1 0 |a COLOR CHARACTERISTICS 
690 1 0 |a HIGH POWER ULTRASOUND 
690 1 0 |a MECHANICAL RESPONSE 
690 1 0 |a MORPHOLOGY AND SIZE 
690 1 0 |a SOLANUM LICOPERSICUM 
690 1 0 |a SOLANUM LYCOPERSICUM 
690 1 0 |a FRUITS 
690 1 0 |a HYDROGEN PEROXIDE 
690 1 0 |a MECHANICAL PROPERTIES 
690 1 0 |a TOMATOES 
690 1 0 |a ULTRASONIC FREQUENCIES 
650 1 7 |2 spines  |a COLOR 
650 1 7 |2 spines  |a COLOR 
650 1 7 |2 spines  |a COLOR 
700 1 |a Nieto, A. 
700 1 |a Hodara, K. 
700 1 |a Alzamora, S.M. 
700 1 |a Castro, M.A. 
773 0 |d Springer New York LLC, 2017  |g v. 10  |h pp. 1324-1336  |k n. 7  |p Food. Bioprocess Technol.  |x 19355130  |t Food and Bioprocess Technology 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85016412284&doi=10.1007%2fs11947-017-1905-4&partnerID=40&md5=ed93b19ca06289c43eb84331d8e62864  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1007/s11947-017-1905-4  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_19355130_v10_n7_p1324_Fava  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_19355130_v10_n7_p1324_Fava  |y Registro en la Biblioteca Digital 
961 |a paper_19355130_v10_n7_p1324_Fava  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 75837