Opacity Studies in Dehydrated Fruits in Relation to Proton Mobility and Supramolecular Aspects

Water content is one of the variables affecting light scattering in foods, which on time determine gloss, translucence, and transparency. The objective of this study was to evaluate the effect of freeze-drying, humidification, and storage time on the changes of light distribution inside fruit tissue...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Agudelo-Laverde, L.M
Otros Autores: Acevedo, N., Schebor, C., del Pilar Buera, M.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Springer New York LLC 2016
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 09724caa a22009977a 4500
001 PAPER-15670
003 AR-BaUEN
005 20230518204626.0
008 190411s2016 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84984922326 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Agudelo-Laverde, L.M. 
245 1 0 |a Opacity Studies in Dehydrated Fruits in Relation to Proton Mobility and Supramolecular Aspects 
260 |b Springer New York LLC  |c 2016 
270 1 0 |m del Pilar Buera, M.; Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, (FCEyN-UBA), CONICETArgentina; email: pilar@di.fcen.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Acevedo, N., Briones, V., Buera, M., Aguilera, J., Microstructure affects the rates of chemical, physical and color changes during storage of dried apple discs (2008) Journal of Food Engineering, 85 (2), pp. 222-231. , COI: 1:CAS:528:DC%2BD1cXmtlSgtbk%3D 
504 |a Agudelo-Laverde, L.M., Schebor, C., Buera, M.P., Evaluation of structural shrinkage on freeze-dried fruits by image analysis: effect of relative humidity and heat treatment (2014) Food and Bioprocess Technology, 7 (9), pp. 2618-2626. , COI: 1:CAS:528:DC%2BC2cXhtlWmsbzJ 
504 |a Agudelo-Laverde, L.M., Schebor, C., Buera, M.P., Proton mobility for the description of dynamic aspects of freeze-dried fruits (2014) Journal of Food Engineering, 125, pp. 44-50. , COI: 1:CAS:528:DC%2BC3sXhvVals7nN 
504 |a Bhandari, B.R., Howes, T., Implication of glass transition for drying and stability of dried foods (1999) Journal of Food Engineering, 40, pp. 71-79 
504 |a Bazardeh, M.E., Esmaiili, M., Sorption isotherm and state diagram in evaluating storage stability for sultana raisins (2014) Journal of Stored Products Research, 59, pp. 140-145 
504 |a Caivano, J., Cesia: a system of visual signs complementing color (1991) Color Research and Application, 16 (4), pp. 258-268 
504 |a Caivano, J.L., Appearance (cesia): construction of scales by means of spinning disks (1994) Color Research and Application, 19, pp. 351-362 
504 |a Caivano, J.L., Cesia: its relation to color in terms of the trichromatic theory (1996) Die Farbe, 4 (1-3), pp. 51-63 
504 |a Caivano, J.L., Menghi, I., Iadisernia, N., Cesia and paints: an atlas of cesia with painted samples (2004) AIC 2004 Color and Paints, , Interim Meeting of the International Color Association, Proceedings 
504 |a Chen, C.C., Paull, R.E., Fruit temperature and crown removal on the occurrence of pineapple fruit translucency (2001) Scientia Horticulturae, 88, pp. 85-95 
504 |a Demco, D.E., Oros-Peusquens, A.M., Utiu, L., Fechete, R., Blümich, B., Jon Shah, N., Molecular dynamics parameter maps by 1H Hahn echo and mixed-echo phase-encoding MRI (2013) Journal of Magnetic Resonance, 227, pp. 1-8. , COI: 1:CAS:528:DC%2BC3sXht1Gisbc%3D 
504 |a Farroni, A.E., Buera, M.P., Cornflake production process: state diagram and water mobility characteristics (2014) Food and Bioprocess Technology, 7, pp. 2902-2911. , COI: 1:CAS:528:DC%2BC2cXhsFyiurrL 
504 |a Greenspan, L., Humidity fixed points of binary saturated aqueous solutions (1977) Journal of Research, 8, pp. 89-96 
504 |a Hahn, E.L., Spin echoes (1950) Physical Review, 80 (4), pp. 580-594 
504 |a Hutchings, J.B., Ronnier Lou, M., Ji, W., (2013) Food appearance quality assessment and specification in: instrumental assessment of food sensory quality, a practical guide, , Woodhead Publishing, Cambrige UK 
504 |a Kiani, H., Sun, D.W., Water crystallization and its importance to freezing of foods: a review (2011) Trends in Food Science & Technology, 22, pp. 407-426. , COI: 1:CAS:528:DC%2BC3MXptlWjsr4%3D 
504 |a Kirtil, E., Oztop, M.H., 1H nuclear magnetic resonance relaxometry and magnetic resonance imaging and applications in food science and processing (2016) Food Engineering Reviews, 8, pp. 1-22 
504 |a Lana, M.M., Tijskens, L.M.M., Kooten, O., Modelling RGB colour aspects and translucency of fresh-cut tomatoes (2006) Postharvest Biology and Technology, 40, pp. 15-25 
504 |a Lozano, R., (1978) El color y su medición, , Editorial América Lee, Buenos Aires 
504 |a MacDougall, D.B., (2002) Colour in food improving quality, , MacDougall, (ed), CRC Press, Boca Ratón 
504 |a MacDougall, D.B., Color measurement (2010) Principles, advances and industrial applications, , Woodhead Publishing, Cambrige 
504 |a Mayor, L., Moreira, R., Sereno, A.M., Shrinkage, density, porosity and shape changes during dehydration of pumpkin (Cucurbita pepo L.) fruits (2011) Journal of Food Engineering, 103, pp. 29-37 
504 |a Papadakis, S., Abdul-Malek, S., Kandem, R., Yam, K., A versatile and inexpensive technique for measuring colour of foods (2000) Food Technology, 54 (12), pp. 48-51 
504 |a Roos, Y.H., Water activity and physical state effects on amorphous food stability (1993) Journal of Food Processing and Preservation, 16 (6), pp. 433-447 
504 |a Saarela, J.M.S., Heikkinen, S.M., Fabritius, T.E.J., Haapala, A.T., Myllylä, R.A., Refractive index matching improves optical object detection in paper (2008) Measurement Science and Technology, 19, pp. 1-7 
504 |a Schmidt, S.J., Water and solid mobility in foods (2004) Advances in Food and Nutrition Research, 48, pp. 1-101 
504 |a Talens, P., Martínez-Navarrete, P., Fito, N., Chiralt, A., Changes in optical and mechanical properties during osmodehydrofreezing of kiwi fruit (2002) Innovative Food Science & Emerging Technologies, 3, pp. 191-199 
504 |a Voda, A., Homan, N., Witek, M., Duijster, A., van Dalen, G., van der Sman, R., Nijsse, J., van Duynhoven, J., The impact of freeze-drying on microstructure and rehydration properties of carrot (2012) Food Research International, 49, pp. 687-693. , COI: 1:CAS:528:DC%2BC38Xhs1Kjs7zK 
520 3 |a Water content is one of the variables affecting light scattering in foods, which on time determine gloss, translucence, and transparency. The objective of this study was to evaluate the effect of freeze-drying, humidification, and storage time on the changes of light distribution inside fruit tissues and their relationship with glass transition and proton mobility. Sliced and powdered freeze-dried apple, pear, and melon humidified at different relative humidities were employed. All the studied materials were translucent when fresh and became opaque after the freeze-drying process. In freeze-dried sliced fruits, the cellular structure contributed to maintain air inside the matrices, and then the opacity of the materials was almost constant, independently of the relative humidity. In the powdered materials, the compacted structure retained less air than sliced samples, and the powders were translucent due to the lower number of light-matter interfaces than in the porous-dried fruits, leading to a lower internal diffusion. The opacity decrease when increasing the water mass fraction followed a variation parallel to the Tg curve. Opacity decrease occurred at T-Tg values above 38 °C and was coincident with the observation of a proton population of higher mobility than that observed below the water content hydration limit value. Proton mobility at a molecular scale could thus be related to supramolecular events affecting food appearance, and this information may help to develop food products with the desired appearance. © 2016, Springer Science+Business Media New York.  |l eng 
593 |a Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, (FCEyN-UBA), CONICET, Buenos Aires, Argentina 
593 |a Universidad del Quindío, Armenia, Colombia 
593 |a Food Sciences Building, Iowa State University, Ames, IA, United States 
690 1 0 |a FREEZE-DRIED FRUITS 
690 1 0 |a GLASS TRANSITION 
690 1 0 |a HUMIDIFICATION 
690 1 0 |a NUCLEAR MAGNETIC RESONANCE 
690 1 0 |a OPACITY 
690 1 0 |a ATMOSPHERIC HUMIDITY 
690 1 0 |a DRYING 
690 1 0 |a FOOD PRODUCTS 
690 1 0 |a GLASS 
690 1 0 |a GLASS TRANSITION 
690 1 0 |a INTERFACES (MATERIALS) 
690 1 0 |a LIGHT SCATTERING 
690 1 0 |a LOW TEMPERATURE DRYING 
690 1 0 |a NUCLEAR MAGNETIC RESONANCE 
690 1 0 |a OPACITY 
690 1 0 |a POWDERS 
690 1 0 |a SUPRAMOLECULAR CHEMISTRY 
690 1 0 |a CELLULAR STRUCTURE 
690 1 0 |a DRIED FRUITS 
690 1 0 |a FREEZE-DRYING PROCESS 
690 1 0 |a HUMIDIFICATION 
690 1 0 |a INTERNAL DIFFUSION 
690 1 0 |a LIGHT DISTRIBUTION 
690 1 0 |a MOLECULAR SCALE 
690 1 0 |a POWDERED MATERIALS 
690 1 0 |a FRUITS 
700 1 |a Acevedo, N. 
700 1 |a Schebor, C. 
700 1 |a del Pilar Buera, M. 
773 0 |d Springer New York LLC, 2016  |g v. 9  |h pp. 1674-1680  |k n. 10  |p Food. Bioprocess Technol.  |x 19355130  |t Food and Bioprocess Technology 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84984922326&doi=10.1007%2fs11947-016-1751-9&partnerID=40&md5=5d5653d505a1aa230b75eb082807941a  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1007/s11947-016-1751-9  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_19355130_v9_n10_p1674_AgudeloLaverde  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_19355130_v9_n10_p1674_AgudeloLaverde  |y Registro en la Biblioteca Digital 
961 |a paper_19355130_v9_n10_p1674_AgudeloLaverde  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 76623