Effect of sugar-phosphate mixtures on the stability of DPPC membranes in dehydrated systems

The stabilizing role of sugars on dehydrated membranes is well established. The formation of a glassy matrix and the direct interaction between the sugars and the lipids are some of the mechanisms proposed to be involved in this stabilizing effect. Phospholipidic systems have been studied extensivel...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Ohtake, S.
Otros Autores: Schebor, C., Palecek, S.P, De Pablo, J.J
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Academic Press Inc. 2004
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 11407caa a22011057a 4500
001 PAPER-4675
003 AR-BaUEN
005 20230518203415.0
008 190411s2004 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-1242293026 
024 7 |2 cas  |a dipalmitoylphosphatidylcholine, 2644-64-6; phosphate, 14066-19-4, 14265-44-2 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a CRYBA 
100 1 |a Ohtake, S. 
245 1 0 |a Effect of sugar-phosphate mixtures on the stability of DPPC membranes in dehydrated systems 
260 |b Academic Press Inc.  |c 2004 
270 1 0 |m De Pablo, J.J.; Dept. of Chem. and Biol. Engineering, University of Wisconsin, 1415 Engineering Drive, Madison, WI 53706, United States; email: depablo@engr.wisc.edu 
506 |2 openaire  |e Política editorial 
504 |a Caffrey, M., Fonseca, V., Leopold, A.C., Lipid-sugar interactions: Relevance to anhydrous biology (1988) Plant Physiol., 86, pp. 754-758 
504 |a Cardona, S., Schebor, C., Buera, M.P., Chirife, J., Thermal stability of invertase in reduced-moisture amorphous matrices in relation to glassy state and trehalose crystallization (1997) J. Food Sci., 62, pp. 105-110 
504 |a Carpenter, J., Crowe, L.M., Crowe, J.H., Stabilization of phosphofructokinase with sugars during freeze-drying: Characterization of enhanced protection in the presence of divalent cations (1987) Biochim. Biophys. Acta, 923, pp. 109-115 
504 |a Conrad, P.B., Miller, D.P., Cielenski, P.R., De Pablo, J.J., Stabilization and preservation of Lactobacillus acidophilus in saccharide matrices (2000) Cryobiology, 41, pp. 17-24 
504 |a Crowe, J.H., Crowe, L.M., Chapman, D., Preservation of membranes in anhydrobiotic organisms: The role of trehalose (1984) Science, 223, pp. 701-703 
504 |a Crowe, J.H., Crowe, L.M., Carpenter, J.F., Aurell Wistrom, C., Stabilization of dry phospholipid bilayers and proteins by sugars (1987) Biochem. J., 242, pp. 1-10 
504 |a Crowe, J.H., Crowe, L.M., Preservation of liposomes by freeze-drying (1992) Liposome Technology, , G. Gregoriadis (Ed.), CRC Press, Boca Raton, FL 
504 |a Crowe, J.H., Carpenter, J.F., Crowe, L.M., The role of vitrification in anhydrobiosis (1998) Annu. Rev. Physiol., 6, pp. 73-103 
504 |a Crowe, L.M., Womersley, C., Crowe, J.H., Reid, D., Appel, L., Rudolph, A., Prevention of fusion and leakage in freeze-dried liposomes by carbohydrates (1986) Biochim. Biophys. Acta, 861, pp. 131-140 
504 |a Crowe, L.M., Crowe, J.H., Trehalose and dipalmitoylphosphatidylcholine revisited (1988) Biochim. Biophys. Acta, 946, pp. 193-201 
504 |a Crowe, L.M., Reid, D., Crowe, J.H., Is trehalose special for preserving dry biomaterials? (1996) Biophys. J., 71, pp. 2087-2093 
504 |a Ekdawi-Sever, N., Conrad, P.B., De Pablo, J.J., The effects of annealing on freeze-dried Lactobacillus acidophilus (2003) J. Food Sci., 68, pp. 2504-2511 
504 |a Engelsen, S.B., Du Penhoat, C.H., Perez, S., Molecular relaxation of sucrose in aqueous solution: How a nanosecond molecular dynamics simulation helps to reconcile NMR data (1998) J. Phys. Chem., 99, pp. 13334-13351 
504 |a Gennis, R.B., (1989) Biomembranes: Molecular Structure and Function, , New York: Springer-Verlag 
504 |a Greenspan, L., Humidity fixed points of binary saturated aqueous solutions (1977) J. Res., 81 (A), pp. 89-96 
504 |a Hancock, B., Zografi, G., Characteristics and significance of the amorphous state in pharmaceutical systems (1997) J. Pharm. Sci., 86, pp. 1-12 
504 |a Koster, K., Webb, M.S., Bryant, G., Lynch, D.V., Interactions between soluble sugars and POPC (1-palmitoyl-2- oleoylphosphatidylcholine) during dehydration: Vitrification of sugars alters the phase behavior of the phospholipid (1994) Biochim. Biophys. Acta, 1193, pp. 143-150 
504 |a Koster, K., Lei, Y.P., Anderson, M., Martin, S., Bryant, G., Effects of vitrified and nonvitrified sugars on phosphatidylcholine fluid-to-gel phase transition (2000) Biophys. J., 78, pp. 1932-1946 
504 |a Lee, J.C., Timasheff, S.N., The stabilization of proteins by sucrose (1981) J. Biol. Chem., 256, pp. 7193-7201 
504 |a Leslie, S., Israeli, B., Lighthart, J., Crowe, J.H., Crowe, L.M., Trehalose and sucrose protect both membranes and proteins in intact bacteria during drying (1995) Appl. Environ. Microbiol., 61, pp. 3592-3597 
504 |a Longinotti, M.P., Mazzobre, M.F., Buera, M.P., Corti, H.R., Effect of salts on properties of aqueous sugar systems in relation to biomaterial stabilization. 2. Sugar crystallization rate and electrical conductivity behavior (2002) Phys. Chem. Chem. Phys., 4, pp. 533-540 
504 |a MacFarlane, D.R., Pringle, J., Annat, G., Reversible self-polymerizing high Tg lyoprotectants (2002) Cryobiology, 45, pp. 188-192 
504 |a Mazzobre, M.F., Buera, M.P., Chirife, J., Glass transition and thermal stability of lactase in low-moisture amorphous polymeric systems (1997) Biotechnol. Prog., 13, pp. 195-199 
504 |a Mazzobre, M.F., Buera, P., Combined effects of trehalose and cations on thermal resistance of B-galactosidase in freeze-dried systems (1999) Biochim. Biophys. Acta, 1473, pp. 337-344 
504 |a Mazzobre, M.F., Longinotti, M.P., Corti, H.R., Buera, M.P., Effect of salts on the properties of aqueous sugar systems, in relation to biomaterial stabilization. 1. Water sorption behaviour and ice crystallization/melting (2001) Cryobiology, 43, pp. 199-210 
504 |a Miller, D.P., Anderson, R.E., De Pablo, J.J., Stabilization of lactate dehydrogenase following freeze-thawing and vacuum drying in the presence of trehalose and borate (1998) Pharm. Res., 15, pp. 1215-1221 
504 |a Miller, D.P., De Pablo, J.J., Corti, H.R., Viscosity and glass transition temperature of aqueous mixtures of trehalose with borax and sodium chloride (1999) J. Phys. Chem. B, 103, p. 10243 
504 |a Moreira, R., Pendas, J., Gutierrez, A., Pomes, R., Duque, J., Franks, F., Effect of sucrose and raffinose on physical state and on lactate dehydrogenase activity of freeze-dried formulations (1998) Cryo Letters, 19, pp. 115-122 
504 |a Murakami, R., Motozato, Y., Viscosity of aqueous glucomannan-borate complex solutions (1992) Polymer, 33, pp. 1108-1109 
504 |a Nagase, H., Ueda, H., Nakagaki, M., Effect of water on lamellar structure of DPPC-sugar systems (1997) Biochim. Biophys. Acta, 1328, pp. 197-206 
504 |a Pezron, E., Leibler, L., Lafuma, F., Complex formation in polymer-ion solutions. 2. Polyelectrolyte effect (1989) Macromolecules, 22, pp. 2656-2662 
504 |a Pezron, E., Leibler, L., Ricard, A., Lafuma, F., Audebert, R., Complex formation in polymer-ion solutions. 2. Polymer concentration effects (1989) Macromolecules, 22, pp. 1169-1174 
504 |a Rossi, S., Buera, M.P., Moreno, S., Chirife, J., Stabilization of the restriction enzyme EcoRI dried with trehalose and other selected glass-forming solutes (1997) Biotechnol. Prog., 13, pp. 609-616 
504 |a Rumsey, S.C., Galeano, N.F., Arad, Y., Deckelbaum, R.J., Cryopreservation with sucrose maintains normal physical and biological properties of human plasma low density lipoproteins (1992) J. Lipid Res., 33, pp. 1551-1561 
504 |a Schebor, C., Burin, L., Buera, M.P., Aguilera, J.M., Chirife, J., Glassy state and thermal inactivation of invertase and lactase in dried amorphous matrices (1997) Biotechnol. Prog., 13, pp. 857-863 
504 |a Steponkus, P.L., Role of the plasma-membrane in freezing-injury and cold-acclimation (1984) Annu. Rev. Plant Physiol., 35, pp. 543-584 
504 |a Sum, A.K., Faller, R., De Pablo, J.J., Molecular simulation study of phospholipid bilayers and insights of the interactions with disaccharides (2003) Biophys. J., 85, pp. 2830-2844 
504 |a Sun, W.Q., Leopold, A.C., Crowe, L.M., Crowe, J.H., Stability of dry liposomes in sugar glasses (1996) Biophys. J., 70, pp. 1769-1776 
504 |a Zhang, J., Steponkus, P.L., Proposed mechanism for depression of the liquid-crystalline-to-gel phase transition temperature of phospholipids in dehydrated sugar-phospholipid mixtures (1996) Cryobiology, 33, pp. 21A 
520 3 |a The stabilizing role of sugars on dehydrated membranes is well established. The formation of a glassy matrix and the direct interaction between the sugars and the lipids are some of the mechanisms proposed to be involved in this stabilizing effect. Phospholipidic systems have been studied extensively as models for biological membranes and also due to the practical applications of liposomes as vehicles for drug delivery. In this work, we evaluate the effect of sugar-phosphate mixtures on the transition temperature of dehydrated 1,2-dipalmitoylphosphatidylcholine, and also examine some physical characteristics of these mixtures, such as the glass transition temperature and water sorption properties. The addition of phosphate salts to sugar systems has several interesting features that merit its consideration in formulations to protect dehydrated labile biomaterials. In particular, sucrose-phosphate mixtures provide an interesting alternative to pure saccharide formulations due to their high glass transition temperatures and their increased ability to maintain a low melting transition temperature in the presence of small amounts of water. © 2004 Published by Elsevier Inc.  |l eng 
593 |a Dept. of Chem. and Biol. Engineering, University of Wisconsin, 1415 Engineering Drive, Madison, WI 53706, United States 
593 |a Departamento de Industrias, Fac. de Ciencias Exactas y Naturales, Ciudad Universitaria, 1428 Cd. Auton. de Buenos Aires, Argentina 
593 |a CONICET, Argentina 
690 1 0 |a GLASS TRANSITION 
690 1 0 |a GLASSES 
690 1 0 |a LIPIDS 
690 1 0 |a SUCROSE 
690 1 0 |a TREHALOSE 
690 1 0 |a VACUUM-DRYING 
690 1 0 |a BIOMATERIAL 
690 1 0 |a CARBOHYDRATE 
690 1 0 |a CHOLINE DERIVATIVE 
690 1 0 |a DIPALMITOYLPHOSPHATIDYLCHOLINE 
690 1 0 |a PHOSPHATE 
690 1 0 |a PHOSPHOLIPID DERIVATIVE 
690 1 0 |a STABILIZING AGENT 
690 1 0 |a SUGAR 
690 1 0 |a ARTICLE 
690 1 0 |a ARTIFICIAL MEMBRANE 
690 1 0 |a CHEMICAL ANALYSIS 
690 1 0 |a COMPLEX FORMATION 
690 1 0 |a GLASS TRANSITION TEMPERATURE 
690 1 0 |a MELTING POINT 
690 1 0 |a MOLECULAR INTERACTION 
690 1 0 |a PHYSICAL CHEMISTRY 
690 1 0 |a PRIORITY JOURNAL 
700 1 |a Schebor, C. 
700 1 |a Palecek, S.P. 
700 1 |a De Pablo, J.J. 
773 0 |d Academic Press Inc., 2004  |g v. 48  |h pp. 81-89  |k n. 1  |p Cryobiology  |x 00112240  |w (AR-BaUEN)CENRE-4349  |t Cryobiology 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-1242293026&doi=10.1016%2fj.cryobiol.2004.01.001&partnerID=40&md5=b16d61f3a027c8f85e430f3f045be8c9  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.cryobiol.2004.01.001  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_00112240_v48_n1_p81_Ohtake  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00112240_v48_n1_p81_Ohtake  |y Registro en la Biblioteca Digital 
961 |a paper_00112240_v48_n1_p81_Ohtake  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 65628