Mass transport effect of mesoscopic domains in the amperometric response of an electroactive species: Modeling for its applications in biomolecule detection

We report the numerical simulation of an electrochemical system compromising a mesoporous material placed at a close distance of a working electrode. The effect of mesoscopic domains to the amperometric response of an electroactive species by applying a cyclic voltammetry is simulated to establish t...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: González, G.
Otros Autores: Priano, G., Günther, M., Battaglini, Fernando
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2010
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 09044caa a22009617a 4500
001 PAPER-8081
003 AR-BaUEN
005 20241007095002.0
008 190411s2010 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-75749124316 
030 |a SABCE 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a González, G. 
245 1 0 |a Mass transport effect of mesoscopic domains in the amperometric response of an electroactive species: Modeling for its applications in biomolecule detection 
260 |c 2010 
270 1 0 |m Battaglini, F.; INQUIMAE - DQIAQF, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellon 2, 1428 Buenos Aires, Argentina; email: battagli@qi.fcen.uba.ar 
504 |a Link, J.R., Sailor, M.J., Smart dust: self-assembling, self-orienting photonic crystals of porous Si (2003) PNAS, 100, pp. 10607-10610 
504 |a Anderson, R.C., Muller, R.S., Tobias, C.W., Investigations of porous silicon for vapor sensing (1990) Sens. Actuators A: Phys., 23, pp. 835-839 
504 |a Ben-Chorin, M., Kux, A., Adsorbate effects on photoluminescence and electrical conductivity of porous silicon (1994) Appl. Phys. Lett., 64, pp. 481-483 
504 |a Lahuerhaas, J.M., Sailor, M.J., Chemical modification of the photoluminescence quenching of porous silicon (1993) Science, 261, pp. 1567-1568 
504 |a Chan, S., Horner, S., Fauchet, P., Miller, B.L., Identification of gram negative bacteria using nanoscale silicon microcavities (2001) J. Am. Chem. Soc., 123, pp. 11797-11798 
504 |a Vlassiouk, I., Takmakov, P., Smirnov, S., Sensing DNA hybridization via ionic conductance through a nanoporous electrode (2005) Langmuir, 21, pp. 4776-4778 
504 |a Bayley, H., Martin, C.R., Resistive-pulse sensings from microbes to molecules (2000) Chem. Rev., 100, pp. 2575-2594 
504 |a Nozawa, K., Osono, C., Sugawara, M., Biotinylated MCM-41 channels as a sensing element in planar bilayer lipid membranes (2007) Sens. Actuators B: Chem., 126, pp. 632-640 
504 |a Mortari, A., Maaroof, A., Martin, D., Cortie, M.B., Mesoporous gold electrodes for sensors based on electrochemical double layer capacitance (2007) Sens. Actuators B: Chem., 123, pp. 262-268 
504 |a Siwy, Z., Trofin, L., Kohli, P., Baker, L.A., Trautmann, C., Martin, C.R., Protein biosensors based on biofunctionalized conical gold nanotubes (2005) J. Am. Chem. Soc., 127, pp. 5000-5001 
504 |a Uram, J.D., Ke, K., Hunt, A.J., Mayer, M., Label-free affinity assays by rapid detection of immune complexes in submicrometer pores (2006) Angew. Chem. Int. Ed., 45, pp. 2281-2285 
504 |a Ito, T., Sun, L., Henriquez, R.R., Crooks, R.M., A carbon nanotube-based Coulter nanoparticle counter (2004) Acc. Chem. Res., 37, pp. 937-945 
504 |a Zhang, B., Zhang, Y.H., White, H.S., The nanopore electrode (2004) Anal. Chem., 76, pp. 6229-6238 
504 |a Kumar, S.K., Hong, J.-D., Photoresponsive ion gating function of an azobenzene polyelectrolyte multilayer spin-self-assembled on a nanoporous support (2008) Langmuir, 24, pp. 4190-4193 
504 |a Hong, S.U., Bruening, M.L., Separation of amino acid mixtures using multilayer polyelectrolyte nanofiltration membranes (2006) J. Membr. Sci., 280, pp. 1-5 
504 |a Newman, J., Thomas-Alyea, K., (2004) Electrochemical Systems - Chapter 11. 3rd ed., , John Wiley & Sons 
504 |a Zhang, Y.H., Zhang, B., White, H.S., Electrochemistry of nanopore electrodes in low ionic strength solutions (2006) J. Phys. Chem. B, 110, pp. 1768-1774 
504 |a Lee, S., Zhang, Y., White, H.S., Harrell, C.C., Martin, C.R., Electrophoretic capture and detection of nanoparticles at the opening of a membrane pore using scanning electrochemical microscopy (2004) Anal. Chem., 76, pp. 6108-6115 
504 |a Bard, A.J., Faulkner, L.R., (2001) Electrochemical Methods. 2nd ed., , Wiley, New York Chapter 6, pp. 236-239 
504 |a Berglund, G.I., Carlsson, G.H., Smith, A.T., Szoke, H., Henriksen, A., Hajdu, J., The catalytic pathway of horseradish peroxidase at high resolution (2002) Nature, 417, pp. 463-468 
504 |a Demirel, G., Çaykara, T., Akaoglu, B., Çakmak, M., Construction of a novel multilayer system and its use for oriented immobilization of immunoglobulin G (2007) Surf. Sci., 601, pp. 4563-4570 
506 |2 openaire  |e Política editorial 
520 3 |a We report the numerical simulation of an electrochemical system compromising a mesoporous material placed at a close distance of a working electrode. The effect of mesoscopic domains to the amperometric response of an electroactive species by applying a cyclic voltammetry is simulated to establish the influence of different parameters on the sensitivity of this system to detect molecules able to block the pores. Alumina membranes were chosen as mesoporous material; they were modified with anti-horseradish peroxidase as model system to test the behavior predicted by the simulation. The label-free assembled electrochemical system shows a reproducible behavior and it is able to detect a 10 nM protein concentration. © 2008 Elsevier B.V. All rights reserved.  |l eng 
536 |a Detalles de la financiación: Agencia Nacional de Promoción Científica y Tecnológica, PICT 2006-00575 
536 |a Detalles de la financiación: Universidad de Buenos Aires, X850, X012 
536 |a Detalles de la financiación: This work was supported by grants of Agencia de Promoción Científica (PICT 2006-00575) and Universidad de Buenos Aires (Project X012 and X850). Fernando Battaglini and Graciela González are research staff of CONICET. Graciela Alicia González is a Lecturer at Universidad de Buenos Aires and research staff of the Argentina Research Council (CONICET). She received her PhD from Universidad de Buenos Aires (2003). Her research interests are modeling of electrochemical processes, nanotechnology and materials science. Graciela Priano is a researcher at Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina. She obtained her Licenciatura en Ciencias Químicas at the same University, where she also received her PhD in Chemistry (2006). Her work focuses on the functionalization of surfaces with specific recognition molecules for the development of test and sensors applied to endotoxin detection. She also works on its application on silicon porous structures in collaboration with Dr. R. Koropecki's Group (Universidad del Litoral, Argentina). Mauricio Günther is an undergraduate and fellow student of chemistry at Universidad de Buenos Aires. Fernando Battaglini is an Associate Professor at Universidad de Buenos Aires and research staff of the Argentina Research Council (CONICET). He received his PhD from Universidad de Buenos Aires in 1991. His research interests are biosensors, electrochemistry and materials science. 
593 |a INQUIMAE - DQIAQF, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellon 2, 1428 Buenos Aires, Argentina 
690 1 0 |a AMPEROMETRY 
690 1 0 |a DIGITAL SIMULATION 
690 1 0 |a LABEL-FREE SENSING 
690 1 0 |a MESOPOROUS MEMBRANE 
690 1 0 |a ALUMINA MEMBRANES 
690 1 0 |a AMPEROMETRIC RESPONSE 
690 1 0 |a AMPEROMETRY 
690 1 0 |a BIOMOLECULE DETECTION 
690 1 0 |a CLOSE DISTANCE 
690 1 0 |a DIGITAL SIMULATION 
690 1 0 |a ELECTROACTIVE SPECIES 
690 1 0 |a ELECTROCHEMICAL SYSTEMS 
690 1 0 |a HORSE-RADISH PEROXIDASE 
690 1 0 |a LABEL FREE 
690 1 0 |a LABEL-FREE SENSING 
690 1 0 |a MASS TRANSPORT 
690 1 0 |a MESOPOROUS MEMBRANES 
690 1 0 |a MESOSCOPICS 
690 1 0 |a MODEL SYSTEM 
690 1 0 |a NUMERICAL SIMULATION 
690 1 0 |a PROTEIN CONCENTRATIONS 
690 1 0 |a REPRODUCIBLE BEHAVIOR 
690 1 0 |a WORKING ELECTRODE 
690 1 0 |a COMPUTER SIMULATION 
690 1 0 |a CYCLIC VOLTAMMETRY 
690 1 0 |a LABELS 
690 1 0 |a MESOPOROUS MATERIALS 
690 1 0 |a OPTICAL DEVICES 
690 1 0 |a SUPERCONDUCTING MATERIALS 
690 1 0 |a MATHEMATICAL MODELS 
700 1 |a Priano, G. 
700 1 |a Günther, M. 
700 1 |a Battaglini, Fernando 
773 0 |d 2010  |g v. 144  |h pp. 349-353  |k n. 2  |p Sens Actuators, B Chem  |x 09254005  |w (AR-BaUEN)CENRE-6816  |t Sensors and Actuators, B: Chemical 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-75749124316&doi=10.1016%2fj.snb.2008.11.006&partnerID=40&md5=80b28df47e9481041611e5073791c284  |x registro  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.snb.2008.11.006  |x doi  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_09254005_v144_n2_p349_Gonzalez  |x handle  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09254005_v144_n2_p349_Gonzalez  |x registro  |y Registro en la Biblioteca Digital 
961 |a paper_09254005_v144_n2_p349_Gonzalez  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion