Effect of physical properties on the stability of Lactobacillus bulgaricus in a freeze-dried galacto-oligosaccharides matrix

The ability of galacto-oligosaccharides (GOS) to protect Lactobacillus delbrueckii subsp. bulgaricus upon freeze drying was analyzed on the basis of their capacity to form glassy structures. Glass transition temperatures (T g) of a GOS matrix at various relative humidities (RH) were determined by DS...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Tymczyszyn, E.E
Otros Autores: Sosa, N., Gerbino, E., Hugo, A., Gómez-Zavaglia, A., Schebor, C.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2012
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 11942caa a22012377a 4500
001 PAPER-9701
003 AR-BaUEN
005 20230518203939.0
008 190411s2012 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84859218822 
024 7 |2 cas  |a Cryoprotective Agents; Oligosaccharides; Water, 7732-18-5 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a IJFMD 
100 1 |a Tymczyszyn, E.E. 
245 1 0 |a Effect of physical properties on the stability of Lactobacillus bulgaricus in a freeze-dried galacto-oligosaccharides matrix 
260 |c 2012 
270 1 0 |m Gómez-Zavaglia, A.Calle 47 y 116 La Plata, Buenos Aires, Argentina; email: angoza@qui.uc.pt 
506 |2 openaire  |e Política editorial 
504 |a Angell, C.A., Perspectives on the glass transition (1988) Journal of Physics and Chemistry of Solids, 49, pp. 863-870 
504 |a Cacela, C., Hincha, D.K., Monosaccharide composition, chain length and linkage type influence the interactions of oligosaccharides with dry phosphatidylcholine membranes (2006) Biochimica et Biophysica Acta, 1758, pp. 680-691 
504 |a Carvalho, A.S., Silva, J., Ho, P., Teixeira, P., Malcata, F.X., Gibbs, P., Effects of various sugars added to growth and drying media upon thermotolerance and survival throughout storage of freeze-dried Lactobacillus delbrueckii ssp. bulgaricus (2004) Biotechnology Progress, 20, pp. 248-254 
504 |a Crowe, J.H., Hoekstra, F.A., Crowe, L.M., Anhydrobiosis (1992) Annual Review of Physiology, 54, pp. 579-599 
504 |a De Man, J.O., Rogosa, M., Sharpe, M.E., A medium for the cultivation of lactobacilli (1960) Journal of Applied Bacteriology, 23, pp. 130-135 
504 |a Fullerton, G.D., Cameron, I.L., Relaxation of biological tissues (1988) Biomedical Magnetic Resonance Imaging, pp. 115-155. , VCH, Verlagsgesellschaft, New York, F.W. Wehrli, D. Shaw, J.B. Kneeland (Eds.) 
504 |a Gibson, G.R., Probert, H.M., Van Loo, J., Rastall, R.A., Roberfroid, M.B., Dietary modulation of the human colonic microbiota: updating the concept of prebiotics (2004) Nutrition Research Reviews, 17, pp. 259-275 
504 |a Gómez-Zavaglia, A., Abraham, A.G., Giorgieri, S., De Antoni, G.L., Application of polyacrylamide gel electrophoresis and capillary gel electrophoresis to the analysis of Lactobacillus delbrueckii whole-cell proteins (1999) Journal of Dairy Science, 82, pp. 870-877 
504 |a Higl, B., Kurtmann, L., Carlsen, C.U., Ratjen, J., Forst, P., Skibsted, L.H., Kulozik, U., Risbo, J., Impact of water activity, temperature, and physical state on the storage stability of Lactobacillus paracasei ssp. paracasei freeze-dried in a lactose matrix (2007) Biotechnology Progress, 23, pp. 794-800 
504 |a Hills, B.P., Wang, Y.L., Tang, H.R., Molecular dynamics in concentrated sugar solutions and glasses: an NMR field cycling study (2001) Molecular Physics, 99 (19), pp. 1679-1687 
504 |a Kalichevsky, M.T., Blanshard, J.M.V., A study of the effect of water on the glass transition of 1:1 mixtures of amylopectin, casein, and gluten using DMA and DMTA (1992) Carbohydrate Polymers, 19, pp. 271-278 
504 |a Leslie, S., Israeli, E., Lighthart, B., Crowe, J.H., Crowe, L.M., Trehalose and sucrose protect both membranes and proteins in intact bacteria during drying (1995) Applied and Environmental Microbiology, 61, pp. 3592-3597 
504 |a Lievense, L.C., Verbeek, M.A.M., Noomen, A., van 't Riet, K., Mechanism of dehydration inactivation of Lactobacillus plantarum (1994) Applied Microbiology and Biotechnology, 41, pp. 90-94 
504 |a Lodato, P., Segovia de Huergo, M., Buera, M.P., Viability and thermal stability of a strain of Saccharomyces cerevisiae freeze-dried in different sugar and polymer matrices (1999) Applied Microbiology and Biotechnology, 52, pp. 215-220 
504 |a Meng, X.C., Stanton, C., Fitzgerald, G.F., Daly, C., Ross, R.P., Anhydrobiotics: the challenges of drying probiotic cultures (2008) Food Chemistry, 106, pp. 1406-1416 
504 |a Miao, S., Mills, S., Stanton, C., Fitzgerald, G.F., Roos, Y.H., Ross, R.P., Effect of disaccharides on survival during storage of freeze dried probiotics (2008) Dairy Science & Technology, 88, pp. 19-30 
504 |a Morgan, C.A., Herman, N., White, P.A., Vesey, G., Preservation of microorganisms by drying: a review (2006) Journal of Microbiological Methods, 66, pp. 183-193 
504 |a Neri, D.M.F., Balcão, V.M., Costa, R.S., Rocha, I.C.A.P., Ferreira, E.M.F.C., Torres, D.P.M., Rodrigues, L.R.M., Teixeira, J.A., Galacto-oligosaccharide production during lactose hydrolysis by free Aspergillus oryzae β-galactosidase and immobilized on magnetic polysiloxane-polyvinyl alcohol (2009) Food Chemistry, 115, pp. 92-99 
504 |a Oldenhof, H., Wolkers, W., Fonseca, F., Passot, S., Marin, M., Effect of sucrose and maltodextrin on the physical properties and survival of air-dried Lactobacillus bulgaricus: an in situ Fourier Transform Infrared Spectroscopy study (2005) Biotechnology Progress, 21, pp. 885-892 
504 |a Playne, M.J., Crittenden, R.G., Galacto-oligosaccharides and other products derived from lactose (2009) Advanced Dairy Chemistry Volume 3: Lactose, Water, Salts and Minor Constituents, pp. 121-201. , Springer, Berlin, P.F. Fox, P. McSweeney (Eds.) 
504 |a Roos, Y.H., (1995) Phase Transitions in Food, , Academic Press, New York 
504 |a Santivarangkna, C., Wenning, M., Foerst, P., Kulozik, U., Damage of cell envelope of Lactobacillus helveticus during vacuum drying (2007) Journal of Applied Microbiology, 102, pp. 748-756 
504 |a Santivarangkna, C., Higl, B., Foerst, P., Protection mechanisms of sugars during different stages of preparation process of dried lactic acid starter cultures (2008) Food Microbiology, 25, pp. 429-441 
504 |a Schebor, C., Galvagno, M., Buera, M.D., Chirife, J., Glass transition temperatures and fermentative activity of heat-treated commercial active dry yeasts (2000) Biotechnology Progress, 16, pp. 163-168 
504 |a Schoonman, A., Ubbink, J., Bisperink, C., Le Meste, M., Karel, M., Solubility and diffusion of nitrogen in maltodextrin/protein tablets (2002) Biotechnology Progress, 18, pp. 139-154 
504 |a Schwab, C., Vogel, R., Ganzle, M.G., Influence of oligosaccharides on the viability and membrane properties of Lactobacillus reuteri TMW1.106 during freeze-drying (2007) Cryobiology, 55, pp. 108-114 
504 |a Texeira, P.M., Castro, H., Mohácsi-Farkas, C., Kirby, R., Identification of sites of injury in Lactobacillus bulgaricus during heat stress (1997) Journal of Applied Microbiology, 83, pp. 219-226 
504 |a Torres, D.P.M., Bastos, M., Gonzalves, M.P.F., Teixeira, J.A., Rodrigues, L.R., Water sorption and plasticization of an amorphous galacto-oligosaccharide mixture (2011) Carbohydrate Polymers, 83, pp. 831-835 
504 |a Tromp, R.H., Parker, R., Ring, S.G., Water diffusion in glasses of carbohydrates (1997) Carbohydrate Research, 303, pp. 199-205 
504 |a Tymczyszyn, E.E., Díaz, M.R., Gómez-Zavaglia, A., Disalvo, E.A., Volume recovery, surface properties and membrane integrity of Lactobacillus delbrueckii subsp. bulgaricus dehydrated in the presence of trehalose or sucrose (2007) Journal of Applied Microbiology, 103, pp. 2410-2419 
504 |a Tymczyszyn, E.E., Gerbino, E., Illanes, A., Gómez-Zavaglia, A., Galacto-oligosaccharides as protective molecules in the preservation of Lactobacillus delbrueckii subsp. bulgaricus (2011) Cryobiology, 62, pp. 123-129 
504 |a Vera, C., Guerrero, C., Illanes, A., Conejeros, R., A pseudo steady-state model for galacto-oligosaccharides synthesis with β-galactosidase from Aspergillus oryzae (2011) Biotechnology and Bioengineering, 108, pp. 2270-2279 
504 |a Wang, Y., Prebiotics: present and future in food science and technology (2009) Food Research International, 42, pp. 8-12 
504 |a Wouters, P.C., Bos, A.P., Ueckert, J., Membrane permeabilization in relation to inactivation kinetics of Lactobacillus species due to pulsed electric fields (2001) Applied and Environmental Microbiology, 67, pp. 3092-3101 
520 3 |a The ability of galacto-oligosaccharides (GOS) to protect Lactobacillus delbrueckii subsp. bulgaricus upon freeze drying was analyzed on the basis of their capacity to form glassy structures. Glass transition temperatures (T g) of a GOS matrix at various relative humidities (RH) were determined by DSC. Survival of L. bulgaricus in a glassy GOS matrix was investigated after freezing, freeze drying, equilibration at different RHs and storage at different temperatures. At 32°C, a drastic viability loss was observed. At 20°C, the survival was affected by the water content, having the samples stored at lower RHs, the highest survival percentages. At 4°C, no decay in the cells count was observed after 45days of storage. The correlation between molecular mobility [as measured by Proton nuclear magnetic resonance ( 1H NMR)] and loss of viability explained the efficiency of GOS as cryoprotectants. The preservation of microorganisms was improved at low molecular mobility and this condition was obtained at low water contents and low storage temperatures. These results are important in the developing of new functional foods containing pre and probiotics. © 2012 Elsevier B.V.  |l eng 
593 |a Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), Conicet La Plata, UNLP, (1900) La Plata, Argentina 
593 |a Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, UBA, Ciudad Universitaria (1428) CABA, Argentina 
690 1 0 |a FREEZE DRYING 
690 1 0 |a GALACTO-OLIGOSACCHARIDES 
690 1 0 |a LACTOBACILLUS 
690 1 0 |a MEMBRANE DAMAGE 
690 1 0 |a MOLECULAR MOBILITY 
690 1 0 |a WATER ACTIVITY 
690 1 0 |a CRYOPROTECTIVE AGENT 
690 1 0 |a GALACTOSE OLIGOSACCHARIDE 
690 1 0 |a ARTICLE 
690 1 0 |a BACTERIAL SURVIVAL 
690 1 0 |a BACTERIAL VIABILITY 
690 1 0 |a BACTERIUM 
690 1 0 |a CONTROLLED STUDY 
690 1 0 |a CRYOPROTECTION 
690 1 0 |a FREEZE DRYING 
690 1 0 |a FREEZING 
690 1 0 |a GLASS TRANSITION TEMPERATURE 
690 1 0 |a HUMIDITY 
690 1 0 |a LACTOBACILLUS BULGARICUS 
690 1 0 |a NONHUMAN 
690 1 0 |a PROTON NUCLEAR MAGNETIC RESONANCE 
690 1 0 |a STORAGE 
690 1 0 |a STORAGE TEMPERATURE 
690 1 0 |a WATER CONTENT 
690 1 0 |a CELL MEMBRANE 
690 1 0 |a COLONY COUNT, MICROBIAL 
690 1 0 |a CRYOPROTECTIVE AGENTS 
690 1 0 |a FREEZE DRYING 
690 1 0 |a HUMIDITY 
690 1 0 |a LACTOBACILLUS 
690 1 0 |a MICROBIAL VIABILITY 
690 1 0 |a OLIGOSACCHARIDES 
690 1 0 |a PROBIOTICS 
690 1 0 |a TRANSITION TEMPERATURE 
690 1 0 |a WATER 
690 1 0 |a LACTOBACILLUS 
690 1 0 |a LACTOBACILLUS DELBRUECKII SUBSP. BULGARICUS 
700 1 |a Sosa, N. 
700 1 |a Gerbino, E. 
700 1 |a Hugo, A. 
700 1 |a Gómez-Zavaglia, A. 
700 1 |a Schebor, C. 
773 0 |d 2012  |g v. 155  |h pp. 217-221  |k n. 3  |p Int. J. Food Microbiol.  |x 01681605  |w (AR-BaUEN)CENRE-5251  |t International Journal of Food Microbiology 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84859218822&doi=10.1016%2fj.ijfoodmicro.2012.02.008&partnerID=40&md5=f4c06bfeafa6a56c38f1fbb14ba0a3d9  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.ijfoodmicro.2012.02.008  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_01681605_v155_n3_p217_Tymczyszyn  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_01681605_v155_n3_p217_Tymczyszyn  |y Registro en la Biblioteca Digital 
961 |a paper_01681605_v155_n3_p217_Tymczyszyn  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 70654