Effective equidimensional decomposition of affine varieties

In this paper we present a probabilistic algorithm which computes, from a finite set of polynomials defining an algebraic variety V, the decomposition of V into equidimensional components. If V is defined by s polynomials in n variables of degrees bounded by an integer d ≥ n and V = ∪l=0 r Vℓ is the...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Jeronimo, G., Sabia, J.
Formato: JOUR
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_00224049_v169_n2-3_p229_Jeronimo
Aporte de:
id todo:paper_00224049_v169_n2-3_p229_Jeronimo
record_format dspace
spelling todo:paper_00224049_v169_n2-3_p229_Jeronimo2023-10-03T14:32:38Z Effective equidimensional decomposition of affine varieties Jeronimo, G. Sabia, J. In this paper we present a probabilistic algorithm which computes, from a finite set of polynomials defining an algebraic variety V, the decomposition of V into equidimensional components. If V is defined by s polynomials in n variables of degrees bounded by an integer d ≥ n and V = ∪l=0 r Vℓ is the equidimensional decomposition of V, the algorithm obtains in sequential time bounded by sO(1)dO(n), for each 0 ≤ ℓ ≤r, a set of n + 1 polynomials of degrees bounded by deg(Vℓ) which define Vℓ. © 2002 Elsevier Science B.V. All rights reserved. Fil:Jeronimo, G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Sabia, J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_00224049_v169_n2-3_p229_Jeronimo
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
description In this paper we present a probabilistic algorithm which computes, from a finite set of polynomials defining an algebraic variety V, the decomposition of V into equidimensional components. If V is defined by s polynomials in n variables of degrees bounded by an integer d ≥ n and V = ∪l=0 r Vℓ is the equidimensional decomposition of V, the algorithm obtains in sequential time bounded by sO(1)dO(n), for each 0 ≤ ℓ ≤r, a set of n + 1 polynomials of degrees bounded by deg(Vℓ) which define Vℓ. © 2002 Elsevier Science B.V. All rights reserved.
format JOUR
author Jeronimo, G.
Sabia, J.
spellingShingle Jeronimo, G.
Sabia, J.
Effective equidimensional decomposition of affine varieties
author_facet Jeronimo, G.
Sabia, J.
author_sort Jeronimo, G.
title Effective equidimensional decomposition of affine varieties
title_short Effective equidimensional decomposition of affine varieties
title_full Effective equidimensional decomposition of affine varieties
title_fullStr Effective equidimensional decomposition of affine varieties
title_full_unstemmed Effective equidimensional decomposition of affine varieties
title_sort effective equidimensional decomposition of affine varieties
url http://hdl.handle.net/20.500.12110/paper_00224049_v169_n2-3_p229_Jeronimo
work_keys_str_mv AT jeronimog effectiveequidimensionaldecompositionofaffinevarieties
AT sabiaj effectiveequidimensionaldecompositionofaffinevarieties
_version_ 1807315995683979264