Effective equidimensional decomposition of affine varieties
In this paper we present a probabilistic algorithm which computes, from a finite set of polynomials defining an algebraic variety V, the decomposition of V into equidimensional components. If V is defined by s polynomials in n variables of degrees bounded by an integer d ≥ n and V = ∪l=0 r Vℓ is the...
Guardado en:
Autores principales: | , |
---|---|
Formato: | JOUR |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_00224049_v169_n2-3_p229_Jeronimo |
Aporte de: |
id |
todo:paper_00224049_v169_n2-3_p229_Jeronimo |
---|---|
record_format |
dspace |
spelling |
todo:paper_00224049_v169_n2-3_p229_Jeronimo2023-10-03T14:32:38Z Effective equidimensional decomposition of affine varieties Jeronimo, G. Sabia, J. In this paper we present a probabilistic algorithm which computes, from a finite set of polynomials defining an algebraic variety V, the decomposition of V into equidimensional components. If V is defined by s polynomials in n variables of degrees bounded by an integer d ≥ n and V = ∪l=0 r Vℓ is the equidimensional decomposition of V, the algorithm obtains in sequential time bounded by sO(1)dO(n), for each 0 ≤ ℓ ≤r, a set of n + 1 polynomials of degrees bounded by deg(Vℓ) which define Vℓ. © 2002 Elsevier Science B.V. All rights reserved. Fil:Jeronimo, G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Sabia, J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_00224049_v169_n2-3_p229_Jeronimo |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
description |
In this paper we present a probabilistic algorithm which computes, from a finite set of polynomials defining an algebraic variety V, the decomposition of V into equidimensional components. If V is defined by s polynomials in n variables of degrees bounded by an integer d ≥ n and V = ∪l=0 r Vℓ is the equidimensional decomposition of V, the algorithm obtains in sequential time bounded by sO(1)dO(n), for each 0 ≤ ℓ ≤r, a set of n + 1 polynomials of degrees bounded by deg(Vℓ) which define Vℓ. © 2002 Elsevier Science B.V. All rights reserved. |
format |
JOUR |
author |
Jeronimo, G. Sabia, J. |
spellingShingle |
Jeronimo, G. Sabia, J. Effective equidimensional decomposition of affine varieties |
author_facet |
Jeronimo, G. Sabia, J. |
author_sort |
Jeronimo, G. |
title |
Effective equidimensional decomposition of affine varieties |
title_short |
Effective equidimensional decomposition of affine varieties |
title_full |
Effective equidimensional decomposition of affine varieties |
title_fullStr |
Effective equidimensional decomposition of affine varieties |
title_full_unstemmed |
Effective equidimensional decomposition of affine varieties |
title_sort |
effective equidimensional decomposition of affine varieties |
url |
http://hdl.handle.net/20.500.12110/paper_00224049_v169_n2-3_p229_Jeronimo |
work_keys_str_mv |
AT jeronimog effectiveequidimensionaldecompositionofaffinevarieties AT sabiaj effectiveequidimensionaldecompositionofaffinevarieties |
_version_ |
1807315995683979264 |