A geometrical bound for integer programming with polynomial constraints
Let F1, …, Fs ϵ Z[X1, …, Xn] be quasiconvex polynomials of degree bounded by d ≥ 2. Let L be an upper bound for the binary length of their coefficients. We show that the system F1 ≤ 0, …, Fs ≤ 0 admits an integer solution if and only if there exists such a solution with binary length bounded by (sd)...
Guardado en:
Autores principales: | Bank, B., Krick, T., Mandel, R., Solernó, P., Budach L. |
---|---|
Formato: | SER |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_03029743_v529LNCS_n_p121_Bank |
Aporte de: |
Ejemplares similares
-
A geometrical bound for integer programming with polynomial constraints
Publicado: (1991) -
Column Generation in Integer Linear Programming
por: Loiseau, Irene
Publicado: (2013) -
Column Generation in Integer Linear Programming
por: Loiseau, I., et al. -
Applied integer programming modeling and solution /
por: Chen, Der-San, 1940-
Publicado: (2010) -
Column Generation in Integer Linear Programming
por: Loiseau, Irene
Publicado: (2014)